Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Drop zero coefficients functions #98

Merged
merged 19 commits into from
Feb 4, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion benchmarks/runners/apfel_bench.py
Original file line number Diff line number Diff line change
Expand Up @@ -66,7 +66,7 @@ def benchmark_nlo(self):


if __name__ == "__main__":
p = pathlib.Path(__file__).parents[1] / "data" / "benchmark.db"
p = pathlib.Path(__file__).absolute().parents[1] / "data" / "benchmark.db"
# p.unlink(missing_ok=True)

plain = BenchmarkPlain()
Expand Down
115 changes: 79 additions & 36 deletions benchmarks/runners/qcdnum_bench.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,8 +6,9 @@
# from yadmark.benchmark.db_interface import DBInterface, QueryFieldsEqual

import pathlib

import copy
import pytest
import numpy as np

from banana.data import power_set

Expand Down Expand Up @@ -43,71 +44,113 @@ class BenchmarkScaleVariations(QCDNUMBenchmark):

"""Vary factorization and renormalization scale"""

# TODO add observable generator
# the observables eventually need to be taylored to the used theories,
# i.e. configuration need to be more scattered in this this class.
# The physical reason is that, for XIR beeing small pQCD becomes unreliable
# and thus we can NOT probe as low Q2 as before.
@staticmethod
def observable_updates():

kinematics = []
kinematics.extend(
[dict(x=x, Q2=90.0) for x in np.geomspace(0.0001, 0.99, 10).tolist()]
)
kinematics.extend(
[dict(x=0.001, Q2=Q2) for Q2 in np.geomspace(4.0, 1000.0, 10).tolist()]
)
observable_names = [
"F2light",
"FLlight",
]
obs_card = dict(
observable_names=observable_names,
kinematics=kinematics,
update={"prDIS": ["NC"]},
)

return observables.build(**(obs_card))

@staticmethod
def theory_updates(pto):
# TODO include FNS variations
# again we might scatter this more among in this class
sv = {"XIR": [0.5, 1.0, 2.0], "XIF": [0.5, 1.0, 2.0], "PTO": [pto]}
# drop plain
return filter(
lambda c: not (c["XIR"] == 1.0 and c["XIF"] == 1.0), power_set(sv)
)
# There is a QCDNUM error: "STOP ZMSTFUN: You cant vary both Q2 and muR2 scales --> STOP"
# this is a limitation of QCDNUM in principle, so you have to work around it, i.e. fix Q2 and only
# vary muR or vice versa
sv = {"XIR": [0.5, 2.0], "XIF": [0.5, 1.0, 2.0], "PTO": [pto]}
# XIR = 0.5 and XIF = 2.0 or viceversa are forbidden
return filter(lambda c: not (c["XIR"] * c["XIF"] == 1.0), power_set(sv))

def benchmark_lo(self):
self.run(
self.theory_updates(0),
observables.build(**(observables.default_config[0])),
["ToyLH"],
self.theory_updates(0), self.observable_updates(), ["ToyLH"],
)

def benchmark_nlo(self):

self.run(
self.theory_updates(1),
observables.build(**(observables.default_config[1])),
["ToyLH"],
self.theory_updates(1), self.observable_updates(), ["ToyLH"],
)


@pytest.mark.skip
class BenchmarkFNS(QCDNUMBenchmark):

"""Vary Flavor Number Schemes"""

@staticmethod
def theory_updates(pto):
def observable_updates(fnames):

fns = {"NfFF": [3, 4, 5], "FNS": ["FFNS", "ZM-VFNS"], "PTO": [pto]}
# drop plain
return filter(
lambda c: not (c["FNS"] == "ZM-VNFS" and c["NfFF"] >= 4.0), power_set(sv)
kinematics = []
kinematics.extend(
[dict(x=x, Q2=10.0) for x in np.geomspace(0.0001, 0.90, 10).tolist()]
)
kinematics.extend(
[dict(x=0.001, Q2=Q2) for Q2 in np.geomspace(4.0, 1000.0, 10).tolist()]
)
observable_names = fnames

def benchmark_nlo(self):
self.run(
self.theory_updates(1),
observables.build(**(observables.default_config[1])),
["ToyLH"],
obs_card = dict(
observable_names=observable_names,
kinematics=kinematics,
update={"prDIS": ["NC"]},
)

return observables.build(**(obs_card))

# Can't really benchmark ZM since no FXtotal is available in QCDNUM, definitions are not matching
def benchmark_ZM(self):

fnames = [
"F2light",
# "FLlight",
]
fns = {"NfFF": [3], "FNS": ["ZM-VFNS"], "PTO": [1]}

self.run(power_set(fns), self.observable_updates(fnames), ["ToyLH"])

def benchmark_FFNS(self):

heavy_fnames = [
{"NfFF": 3, "fnames": ["F2light", "FLlight", "F2charm", "FLcharm",]},
{"NfFF": 4, "fnames": ["F2bottom", "FLbottom",]},
# {"NfFF" :5, "fnames": ["F2top","FLtop",]},
]

# loop over NfFF
for item in heavy_fnames:
fns = {"NfFF": [item["NfFF"]], "FNS": ["FFNS"], "PTO": [1]}
self.run(power_set(fns), self.observable_updates(item["fnames"]), ["ToyLH"])


if __name__ == "__main__":
#p = pathlib.Path(__file__).parents[1] / "data" / "benchmark.db"
# p = pathlib.Path(__file__).parents[1] / "data" / "benchmark.db"
# p.unlink(missing_ok=True)

plain = BenchmarkPlain()
plain.benchmark_lo()
# plain = BenchmarkPlain()
# plain.benchmark_lo()
# plain.benchmark_nlo()

# sv = BenchmarkScaleVariations()
# sv.benchmark_lo()
sv = BenchmarkScaleVariations()
sv.benchmark_nlo()

# fns = BenchmarkFNS()
# fns.benchmark_nlo()
fns = BenchmarkFNS()
fns.benchmark_ZM()
fns.benchmark_FFNS()


# class QCDNUMBenchmark:
Expand Down
24 changes: 12 additions & 12 deletions benchmarks/runners/sandbox.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,30 +23,30 @@ def generate_observables():
kinematics = []
kinematics.extend(
[dict(x=x, Q2=90.0) for x in defaults["interpolation_xgrid"][3::3]]
# np.linspace(1e-3, 1, 50)
#np.linspace(1e-3, 1, 50)
)
# kinematics.extend([dict(x=x, Q2=90) for x in np.linspace(.8, .99, 10).tolist()])
kinematics.extend([dict(x=0.001, Q2=Q2) for Q2 in np.geomspace(4, 1e3, 10).tolist()])
kinematics.extend([dict(x=0.01, Q2=Q2) for Q2 in np.geomspace(4, 1e3, 10).tolist()])
# kinematics.extend([dict(x=0.0051, Q2=Q2) for Q2 in np.geomspace(10, 1e5, 60).tolist()])
# kinematics = [dict(x=0.001,Q2=1e4)]
# kinematics.extend([dict(x=0.01, Q2=Q2) for Q2 in np.geomspace(500, 800, 10).tolist()])
# kinematics.extend([dict(x=0.1, Q2=Q2) for Q2 in np.geomspace(4, 1e3, 10).tolist()])
observable_names = [
"F2light",
#"F2charm",
"F2charm",
# "F2bottom",
# "F2top",
#"F2total",
# "FLlight",
#"FLcharm",
"F2total",
"FLlight",
"FLcharm",
# "FLbottom",
# "FLtotal",
# "F3light",
#"F3charm",
"FLtotal",
"F3light",
"F3charm",
# "F3bottom",
# "F3total",
"F3total",
]
update = {"prDIS": ["NC"]}
update = {"prDIS": ["CC"]}
# card["interpolation_xgrid"] = list(card["interpolation_xgrid"])
# card["interpolation_xgrid"] = list(reversed(pineappl_zgrid))
# card["interpolation_is_log"] = False
Expand All @@ -56,7 +56,7 @@ def generate_observables():
return dict(observable_names=observable_names,kinematics=kinematics,update=update)

def _run(self):
self.run([{}], observables.build(**(self.generate_observables())), ["ToyLH"])
self.run([{}], observables.build(**(self.generate_observables())), ["CT14nlo_NF4"])


if __name__ == "__main__":
Expand Down
128 changes: 128 additions & 0 deletions benchmarks/runners/xspace_bench_bench.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,128 @@
# -*- coding: utf-8 -*-
#
# Compare the results with QCDNUM

# import pytest
# from yadmark.benchmark.db_interface import DBInterface, QueryFieldsEqual

import pathlib
import copy
import pytest
import numpy as np

from banana.data import power_set

from yadmark.benchmark.runner import Runner
from yadmark.data import observables


class xspaceBenchmark(Runner):
"""
Globally set the external program to xspace_bench
"""

external = "xspace_bench"


class BenchmarkPlain(xspaceBenchmark):

"""The most basic checks"""

def benchmark_lo(self):
self.run([{}], observables.build(**(observables.default_config[0])), ["ToyLH"])

def benchmark_nlo(self):
self.run(
[{"PTO": 1}],
observables.build(**(observables.default_config[1])),
["ToyLH"],
)


@pytest.mark.skip
class BenchmarkFNS(xspaceBenchmark):

"""Vary Flavor Number Schemes"""

@staticmethod
def observable_updates(FX):

obs_cards = []
for proc in FX.keys():
kinematics = []
kinematics.extend(
[dict(x=x, Q2=10.0) for x in np.geomspace(0.0001, 0.90, 10).tolist()]
)
kinematics.extend(
[dict(x=0.001, Q2=Q2) for Q2 in np.geomspace(4.0, 16.0, 10).tolist()]
)
observable_names = FX[proc]
obs_card = dict(
observable_names=observable_names,
kinematics=kinematics,
update={"prDIS": [proc]},
)
obs_cards.extend(observables.build(**(obs_card)))

return obs_cards

def benchmark_ZM(self):

fnames = [
"F2total",
"FLtotal",
]
FX = {
"CC": fnames + ["F3total"],
"NC": fnames,
}
fns = {"NfFF": [3, 4, 5], "FNS": ["ZM-VFNS"], "PTO": [1]}

self.run(power_set(fns), self.observable_updates(FX), ["ToyLHAPDF"])

def benchmark_FFNS(self):

fnames = [
"F2light",
"F2total",
"F2charm",
"FLlight",
"FLtotal",
"FLcharm",
]
FX = {
"CC": fnames + ["F3charm", "F3total"],
"NC": fnames,
}
fns = {"NfFF": [3], "FNS": ["FFNS"], "PTO": [1]}

self.run(power_set(fns), self.observable_updates(FX), ["ToyLHAPDF"])

def benchmark_FONLL(self):

fnames = [
"F2light",
"F2total",
"F2charm",
"FLlight",
"FLtotal",
"FLcharm",
]
FX = {
"CC": fnames + ["F3charm", "F3total"],
"NC": fnames,
}
fns = {"NfFF": [4], "FNS": ["FONLL-A"], "PTO": [1]}
self.run(power_set(fns), self.observable_updates(FX), ["ToyLHAPDF"])


if __name__ == "__main__":

# plain = BenchmarkPlain()
# plain.benchmark_lo()
# plain.benchmark_nlo()

fns = BenchmarkFNS()
fns.benchmark_ZM()
fns.benchmark_FFNS()
fns.benchmark_FONLL()
Loading