Skip to content
/ CCAFNet Public

[TMM2021][CCAFNet]Crossflow and Cross-scale Adaptive Fusion Network for Detecting Salient Objects in RGB-D Images

Notifications You must be signed in to change notification settings

zyrant/CCAFNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

5443e77 · Sep 25, 2021

History

17 Commits
Sep 22, 2021
Sep 25, 2021
Sep 22, 2021
Sep 23, 2021
Sep 22, 2021
Sep 22, 2021

Repository files navigation

Code and result about CCAFNet(IEEE TMM)
'CCAFNet: Crossflow and Cross-scale Adaptive Fusion Network for Detecting Salient Objects in RGB-D Images' IEEE TMM image

Requirements

Python 3.7, Pytorch 1.5.0+, Cuda 10.2, TensorboardX 2.1, opencv-python

Dataset and Evaluate tools

RGB-D SOD Datasets can be found in: http://dpfan.net/d3netbenchmark/ or https://github.com/jiwei0921/RGBD-SOD-datasets

we use the matlab verison provide by Dengping Fan, and we provide our test datesets 百度网盘 提取码:zust

Result

image image

Test maps: 百度网盘 提取码:zust
Pretrained model download:百度网盘 提取码:zust
PS: we resize the testing data to the size of 224 * 224 for quicky evaluate, 百度网盘 提取码:zust

Citation

@ARTICLE{9424966,
author={Zhou, Wujie and Zhu, Yun and Lei, Jingsheng and Wan, Jian and Yu, Lu},
journal={IEEE Transactions on Multimedia},
title={CCAFNet: Crossflow and Cross-scale Adaptive Fusion Network for Detecting Salient Objects in RGB-D Images},
year={2021},
doi={10.1109/TMM.2021.3077767}}

Acknowledgement

The implement of this project is based on the code of ‘Cascaded Partial Decoder for Fast and Accurate Salient Object Detection, CVPR2019’and 'BBS-Net: RGB-D Salient Object Detection with a Bifurcated Backbone Strategy Network' proposed by Wu et al and Deng et al.

Contact

Please drop me an email for further problems or discussion: zzzyylink@gmail.com or wujiezhou@163.com

About

[TMM2021][CCAFNet]Crossflow and Cross-scale Adaptive Fusion Network for Detecting Salient Objects in RGB-D Images

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages