Skip to content
/ DAN Public

Source code for "Question difficulty prediction for multiple choice problems in medical exams"

License

Notifications You must be signed in to change notification settings

zpqiu/DAN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Description

This code is for "Question difficulty prediction for multiple choice problems in medical exams".

Set Environments

We first need to create a python=3.6 virtualenv and activate it.

Then, we should intall some dependencies.

pip install -r requirements.txt

Prepare Data

The corpus consists of three files train.txt, dev.txt, and test.txt, which are put in data folder. The format of each line in these files is

{
    "id": XXX,
    "difficulty": 0.XXX,
    "question": "TEXT OF QUESTION",
    "answer": "B",
    "A": "OPTION A", "B": "OPTION B", "C": "OPTION C", "D": "OPTION D", "E": "OPTION E",
    "es_research_facts": {
        "Q+A": ["XXXX", "XXXX", ...],
        "Q+B": ["XXXX", "XXXX", ...],
        "Q+C": ["XXXX", "XXXX", ...],
        "Q+D": ["XXXX", "XXXX", ...],
        "Q+E": ["XXXX", "XXXX", ...],
    }
}

Pre-process

Build corpus

cat data/train.txt data/dev.txt data/test.txt > data/total.txt
python -m scripts.build_corpus --f data/total.txt

Build vocab

python -m scripts.build_vocab -c data/total.txt -s 40000 -wo data/word_embeddings.txt

Construct dataset

python -m scripts.build_dataset --f data/train.txt -e 10 --o data/train_set.txt
python -m scripts.build_dataset --f data/dev.txt -e 10 --o data/dev_set.txt
python -m scripts.build_dataset --f data/test.txt -e 10 --o data/test_set.txt

Training and Testing

# Training
python main.py -cf conf.ini --mode 0 
# Testing
python main.py -cf conf.ini --mode 1 --epoch_for_test 1

Citation

If you uses this code, please cite the paper.

@inproceedings{DBLP:conf/cikm/QiuW019,
  author    = {Zhaopeng Qiu and
               Xian Wu and
               Wei Fan},
  title     = {Question Difficulty Prediction for Multiple Choice Problems in Medical Exams},
  booktitle = {{CIKM}},
  pages     = {139--148},
  publisher = {{ACM}},
  year      = {2019}
}

About

Source code for "Question difficulty prediction for multiple choice problems in medical exams"

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages