Skip to content

Conversation

@tchow-zlai
Copy link
Collaborator

@tchow-zlai tchow-zlai commented Mar 20, 2025

Summary

Ran the canary integration tests!

                    <-----------------------------------------------------------------------------------
                    ------------------------------------------------------------------------------------
                                                      DATAPROC LOGS
                    ------------------------------------------------------------------------------------
                    ------------------------------------------------------------------------------------>

++ cat tmp_metadata_upload.out
++ grep 'Dataproc submitter job id'
++ cut -d ' ' -f5
+ METADATA_UPLOAD_JOB_ID=0f0a7099-3f03-4487-b291-de26f3d56cdb
+ check_dataproc_job_state 0f0a7099-3f03-4487-b291-de26f3d56cdb
+ JOB_ID=0f0a7099-3f03-4487-b291-de26f3d56cdb
+ '[' -z 0f0a7099-3f03-4487-b291-de26f3d56cdb ']'
+ echo -e '\033[0;32m <<<<<<<<<<<<<<<<-----------------JOB STATUS----------------->>>>>>>>>>>>>>>>>\033[0m'
 <<<<<<<<<<<<<<<<-----------------JOB STATUS----------------->>>>>>>>>>>>>>>>>
++ gcloud dataproc jobs describe 0f0a7099-3f03-4487-b291-de26f3d56cdb --region=us-central1 --format=flattened
++ grep status.state:
+ JOB_STATE='status.state:                    DONE'
+ echo status.state: DONE
status.state: DONE
+ '[' -z 'status.state:                    DONE' ']'
+ echo -e '\033[0;32m<<<<<.....................................FETCH.....................................>>>>>\033[0m'
<<<<<.....................................FETCH.....................................>>>>>
+ touch tmp_fetch.out
+ zipline run --repo=/Users/thomaschow/zipline-ai/chronon/api/py/test/canary --mode fetch --conf=production/group_bys/gcp/purchases.v1_dev -k '{"user_id":"5"}' --name gcp.purchases.v1_dev
+ tee tmp_fetch.out
+ grep -q purchase_price_average_14d
+ cat tmp_fetch.out
+ grep purchase_price_average_14d
  "purchase_price_average_14d" : 72.5,
+ '[' 0 -ne 0 ']'
+ echo -e '\033[0;32m<<<<<.....................................SUCCEEDED!!!.....................................>>>>>\033[0m'
<<<<<.....................................SUCCEEDED!!!.....................................>>>>>

Checklist

  • Added Unit Tests
  • Covered by existing CI
  • Integration tested
  • Documentation update

Summary by CodeRabbit

  • Chores
    • Upgraded several core dependency versions from 1.5.2 to 1.6.1.
    • Updated artifact metadata, including revised checksums and additional dependency entries, to enhance concurrency handling and HTTP client support.

@coderabbitai
Copy link
Contributor

coderabbitai bot commented Mar 20, 2025

Walkthrough

This PR upgrades the Iceberg dependency versions across build configurations. In particular, it updates the JAR reference for the Iceberg BigQuery Catalog lib in the Bazel build, and revises the Iceberg Spark runtime artifacts (for both Scala 2.12 and 2.13) in the Maven configurations. Artifact hashes, new shaded packages, and HTTP client implementations are also added, ensuring that all related dependency entries reflect version 1.6.1.

Changes

File(s) Change Summary
cloud_gcp/BUILD.bazel Updated JAR version in java_import for iceberg_bigquery_catalog_lib from 1.5.2 to 1.6.1.
maven_install.json, tools/.../maven_repository.bzl Upgraded iceberg-spark-runtime versions (Scala 2.12 & 2.13) from 1.5.2 to 1.6.1; updated artifact hashes; added new shaded packages and HTTP client factory implementations.

Possibly related PRs

Suggested reviewers

  • nikhil-zlai
  • varant-zlai
  • piyush-zlai
  • chewy-zlai
  • kumar-zlai
  • david-zlai

Poem

Code evolves with each new line,
Dependencies climb to a version divine.
JARs and hashes find their place,
Shaded packages join the race.
In our build, new features gleam—
A small upgrade, a coder's dream!
🚀 Happy merging!

Warning

Review ran into problems

🔥 Problems

GitHub Actions and Pipeline Checks: Resource not accessible by integration - https://docs.github.com/rest/actions/workflow-runs#list-workflow-runs-for-a-repository.

Please grant the required permissions to the CodeRabbit GitHub App under the organization or repository settings.


🪧 Tips

Chat

There are 3 ways to chat with CodeRabbit:

  • Review comments: Directly reply to a review comment made by CodeRabbit. Example:
    • I pushed a fix in commit <commit_id>, please review it.
    • Generate unit testing code for this file.
    • Open a follow-up GitHub issue for this discussion.
  • Files and specific lines of code (under the "Files changed" tab): Tag @coderabbitai in a new review comment at the desired location with your query. Examples:
    • @coderabbitai generate unit testing code for this file.
    • @coderabbitai modularize this function.
  • PR comments: Tag @coderabbitai in a new PR comment to ask questions about the PR branch. For the best results, please provide a very specific query, as very limited context is provided in this mode. Examples:
    • @coderabbitai gather interesting stats about this repository and render them as a table. Additionally, render a pie chart showing the language distribution in the codebase.
    • @coderabbitai read src/utils.ts and generate unit testing code.
    • @coderabbitai read the files in the src/scheduler package and generate a class diagram using mermaid and a README in the markdown format.
    • @coderabbitai help me debug CodeRabbit configuration file.

Note: Be mindful of the bot's finite context window. It's strongly recommended to break down tasks such as reading entire modules into smaller chunks. For a focused discussion, use review comments to chat about specific files and their changes, instead of using the PR comments.

CodeRabbit Commands (Invoked using PR comments)

  • @coderabbitai pause to pause the reviews on a PR.
  • @coderabbitai resume to resume the paused reviews.
  • @coderabbitai review to trigger an incremental review. This is useful when automatic reviews are disabled for the repository.
  • @coderabbitai full review to do a full review from scratch and review all the files again.
  • @coderabbitai summary to regenerate the summary of the PR.
  • @coderabbitai resolve resolve all the CodeRabbit review comments.
  • @coderabbitai configuration to show the current CodeRabbit configuration for the repository.
  • @coderabbitai help to get help.

Other keywords and placeholders

  • Add @coderabbitai ignore anywhere in the PR description to prevent this PR from being reviewed.
  • Add @coderabbitai summary to generate the high-level summary at a specific location in the PR description.
  • Add @coderabbitai anywhere in the PR title to generate the title automatically.

CodeRabbit Configuration File (.coderabbit.yaml)

  • You can programmatically configure CodeRabbit by adding a .coderabbit.yaml file to the root of your repository.
  • Please see the configuration documentation for more information.
  • If your editor has YAML language server enabled, you can add the path at the top of this file to enable auto-completion and validation: # yaml-language-server: $schema=https://coderabbit.ai/integrations/schema.v2.json

Documentation and Community

  • Visit our Documentation for detailed information on how to use CodeRabbit.
  • Join our Discord Community to get help, request features, and share feedback.
  • Follow us on X/Twitter for updates and announcements.

Co-authored-by: Thomas Chow <[email protected]>
Copy link
Contributor

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 0

🧹 Nitpick comments (1)
tools/build_rules/dependencies/maven_repository.bzl (1)

88-88: Duplicate artifact entry.

This is a duplicate of line 77 with the same artifact and version. Consider removing one instance.

-        "org.apache.iceberg:iceberg-spark-runtime-3.5_2.12:1.6.1",
📜 Review details

Configuration used: CodeRabbit UI
Review profile: CHILL
Plan: Pro (Legacy)

📥 Commits

Reviewing files that changed from the base of the PR and between 9eadf69 and ba1a957.

⛔ Files ignored due to path filters (1)
  • cloud_gcp/iceberg-bigquery-catalog-1.6.1-1.0.1-beta.jar is excluded by !**/*.jar
📒 Files selected for processing (3)
  • cloud_gcp/BUILD.bazel (1 hunks)
  • maven_install.json (8 hunks)
  • tools/build_rules/dependencies/maven_repository.bzl (3 hunks)
🧰 Additional context used
🧠 Learnings (1)
cloud_gcp/BUILD.bazel (1)
Learnt from: tchow-zlai
PR: zipline-ai/chronon#393
File: cloud_gcp/BUILD.bazel:99-99
Timestamp: 2025-03-19T16:14:03.096Z
Learning: The jar file "iceberg-bigquery-catalog-1.5.2-1.0.1-beta.jar" in cloud_gcp/BUILD.bazel is a local dependency and should not be replaced with maven_artifact.
⏰ Context from checks skipped due to timeout of 90000ms (3)
  • GitHub Check: non_spark_tests
  • GitHub Check: non_spark_tests
  • GitHub Check: enforce_triggered_workflows
🔇 Additional comments (11)
cloud_gcp/BUILD.bazel (1)

78-78: Version update confirmed.

Iceberg BigQuery Catalog JAR upgraded from 1.5.2 to 1.6.1. This matches the overall Iceberg dependency update in this PR.

tools/build_rules/dependencies/maven_repository.bzl (2)

77-77: Iceberg version update.

Spark runtime dependency version updated to 1.6.1.


100-100: Scala 2.13 version updated.

Iceberg Spark runtime for Scala 2.13 updated to version 1.6.1.

maven_install.json (8)

3-4: Check artifact hashes.
Confirm new __INPUT_ARTIFACTS_HASH and __RESOLVED_ARTIFACTS_HASH are correct.


3466-3477: Iceberg Spark runtime update.
Hashes and version updated to 1.6.1—verify they match the official release.


20239-20244: New jctools entries.
Confirm new jctools shaded package entries are needed.


20767-20771: Nessie packages update.
Minor formatting/order changes; ensure they are intentional.


20912-20917: Repeat jctools shading.
Check duplicate jctools entries for consistency.


21440-21444: Nessie packages check.
Minor update; confirm consistency with overall configuration.


32717-32721: HTTP client mapping added.
New HttpClientFactory mappings added—verify necessity.


33534-33538: Duplicate HTTP mapping update.
Ensure consistency with the similar mapping above.

@tchow-zlai tchow-zlai requested a review from david-zlai March 20, 2025 23:05
Co-authored-by: Thomas Chow <[email protected]>
@tchow-zlai tchow-zlai requested a review from chewy-zlai March 21, 2025 17:34
@tchow-zlai tchow-zlai merged commit 194150e into main Mar 24, 2025
7 checks passed
@tchow-zlai tchow-zlai deleted the tchow/maven-repo branch March 24, 2025 23:32
This was referenced Mar 28, 2025
kumar-zlai pushed a commit that referenced this pull request Apr 25, 2025
## Summary

Ran the canary integration tests! 

```bash

                    <-----------------------------------------------------------------------------------
                    ------------------------------------------------------------------------------------
                                                      DATAPROC LOGS
                    ------------------------------------------------------------------------------------
                    ------------------------------------------------------------------------------------>

++ cat tmp_metadata_upload.out
++ grep 'Dataproc submitter job id'
++ cut -d ' ' -f5
+ METADATA_UPLOAD_JOB_ID=0f0a7099-3f03-4487-b291-de26f3d56cdb
+ check_dataproc_job_state 0f0a7099-3f03-4487-b291-de26f3d56cdb
+ JOB_ID=0f0a7099-3f03-4487-b291-de26f3d56cdb
+ '[' -z 0f0a7099-3f03-4487-b291-de26f3d56cdb ']'
+ echo -e '\033[0;32m <<<<<<<<<<<<<<<<-----------------JOB STATUS----------------->>>>>>>>>>>>>>>>>\033[0m'
 <<<<<<<<<<<<<<<<-----------------JOB STATUS----------------->>>>>>>>>>>>>>>>>
++ gcloud dataproc jobs describe 0f0a7099-3f03-4487-b291-de26f3d56cdb --region=us-central1 --format=flattened
++ grep status.state:
+ JOB_STATE='status.state:                    DONE'
+ echo status.state: DONE
status.state: DONE
+ '[' -z 'status.state:                    DONE' ']'
+ echo -e '\033[0;32m<<<<<.....................................FETCH.....................................>>>>>\033[0m'
<<<<<.....................................FETCH.....................................>>>>>
+ touch tmp_fetch.out
+ zipline run --repo=/Users/thomaschow/zipline-ai/chronon/api/py/test/canary --mode fetch --conf=production/group_bys/gcp/purchases.v1_dev -k '{"user_id":"5"}' --name gcp.purchases.v1_dev
+ tee tmp_fetch.out
+ grep -q purchase_price_average_14d
+ cat tmp_fetch.out
+ grep purchase_price_average_14d
  "purchase_price_average_14d" : 72.5,
+ '[' 0 -ne 0 ']'
+ echo -e '\033[0;32m<<<<<.....................................SUCCEEDED!!!.....................................>>>>>\033[0m'
<<<<<.....................................SUCCEEDED!!!.....................................>>>>>
```

## Checklist
- [ ] Added Unit Tests
- [ ] Covered by existing CI
- [ ] Integration tested
- [ ] Documentation update
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
	- Upgraded several core dependency versions from 1.5.2 to 1.6.1.
- Updated artifact metadata, including revised checksums and additional
dependency entries, to enhance concurrency handling and HTTP client
support.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->

<!-- av pr metadata
This information is embedded by the av CLI when creating PRs to track
the status of stacks when using Aviator. Please do not delete or edit
this section of the PR.
```
{"parent":"main","parentHead":"","trunk":"main"}
```
-->

---------

Co-authored-by: Thomas Chow <[email protected]>
kumar-zlai pushed a commit that referenced this pull request Apr 29, 2025
## Summary

Ran the canary integration tests! 

```bash

                    <-----------------------------------------------------------------------------------
                    ------------------------------------------------------------------------------------
                                                      DATAPROC LOGS
                    ------------------------------------------------------------------------------------
                    ------------------------------------------------------------------------------------>

++ cat tmp_metadata_upload.out
++ grep 'Dataproc submitter job id'
++ cut -d ' ' -f5
+ METADATA_UPLOAD_JOB_ID=0f0a7099-3f03-4487-b291-de26f3d56cdb
+ check_dataproc_job_state 0f0a7099-3f03-4487-b291-de26f3d56cdb
+ JOB_ID=0f0a7099-3f03-4487-b291-de26f3d56cdb
+ '[' -z 0f0a7099-3f03-4487-b291-de26f3d56cdb ']'
+ echo -e '\033[0;32m <<<<<<<<<<<<<<<<-----------------JOB STATUS----------------->>>>>>>>>>>>>>>>>\033[0m'
 <<<<<<<<<<<<<<<<-----------------JOB STATUS----------------->>>>>>>>>>>>>>>>>
++ gcloud dataproc jobs describe 0f0a7099-3f03-4487-b291-de26f3d56cdb --region=us-central1 --format=flattened
++ grep status.state:
+ JOB_STATE='status.state:                    DONE'
+ echo status.state: DONE
status.state: DONE
+ '[' -z 'status.state:                    DONE' ']'
+ echo -e '\033[0;32m<<<<<.....................................FETCH.....................................>>>>>\033[0m'
<<<<<.....................................FETCH.....................................>>>>>
+ touch tmp_fetch.out
+ zipline run --repo=/Users/thomaschow/zipline-ai/chronon/api/py/test/canary --mode fetch --conf=production/group_bys/gcp/purchases.v1_dev -k '{"user_id":"5"}' --name gcp.purchases.v1_dev
+ tee tmp_fetch.out
+ grep -q purchase_price_average_14d
+ cat tmp_fetch.out
+ grep purchase_price_average_14d
  "purchase_price_average_14d" : 72.5,
+ '[' 0 -ne 0 ']'
+ echo -e '\033[0;32m<<<<<.....................................SUCCEEDED!!!.....................................>>>>>\033[0m'
<<<<<.....................................SUCCEEDED!!!.....................................>>>>>
```

## Checklist
- [ ] Added Unit Tests
- [ ] Covered by existing CI
- [ ] Integration tested
- [ ] Documentation update
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
	- Upgraded several core dependency versions from 1.5.2 to 1.6.1.
- Updated artifact metadata, including revised checksums and additional
dependency entries, to enhance concurrency handling and HTTP client
support.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->

<!-- av pr metadata
This information is embedded by the av CLI when creating PRs to track
the status of stacks when using Aviator. Please do not delete or edit
this section of the PR.
```
{"parent":"main","parentHead":"","trunk":"main"}
```
-->

---------

Co-authored-by: Thomas Chow <[email protected]>
chewy-zlai pushed a commit that referenced this pull request May 15, 2025
## Summary

Ran the canary integration tests! 

```bash

                    <-----------------------------------------------------------------------------------
                    ------------------------------------------------------------------------------------
                                                      DATAPROC LOGS
                    ------------------------------------------------------------------------------------
                    ------------------------------------------------------------------------------------>

++ cat tmp_metadata_upload.out
++ grep 'Dataproc submitter job id'
++ cut -d ' ' -f5
+ METADATA_UPLOAD_JOB_ID=0f0a7099-3f03-4487-b291-de26f3d56cdb
+ check_dataproc_job_state 0f0a7099-3f03-4487-b291-de26f3d56cdb
+ JOB_ID=0f0a7099-3f03-4487-b291-de26f3d56cdb
+ '[' -z 0f0a7099-3f03-4487-b291-de26f3d56cdb ']'
+ echo -e '\033[0;32m <<<<<<<<<<<<<<<<-----------------JOB STATUS----------------->>>>>>>>>>>>>>>>>\033[0m'
 <<<<<<<<<<<<<<<<-----------------JOB STATUS----------------->>>>>>>>>>>>>>>>>
++ gcloud dataproc jobs describe 0f0a7099-3f03-4487-b291-de26f3d56cdb --region=us-central1 --format=flattened
++ grep status.state:
+ JOB_STATE='status.state:                    DONE'
+ echo status.state: DONE
status.state: DONE
+ '[' -z 'status.state:                    DONE' ']'
+ echo -e '\033[0;32m<<<<<.....................................FETCH.....................................>>>>>\033[0m'
<<<<<.....................................FETCH.....................................>>>>>
+ touch tmp_fetch.out
+ zipline run --repo=/Users/thomaschow/zipline-ai/chronon/api/py/test/canary --mode fetch --conf=production/group_bys/gcp/purchases.v1_dev -k '{"user_id":"5"}' --name gcp.purchases.v1_dev
+ tee tmp_fetch.out
+ grep -q purchase_price_average_14d
+ cat tmp_fetch.out
+ grep purchase_price_average_14d
  "purchase_price_average_14d" : 72.5,
+ '[' 0 -ne 0 ']'
+ echo -e '\033[0;32m<<<<<.....................................SUCCEEDED!!!.....................................>>>>>\033[0m'
<<<<<.....................................SUCCEEDED!!!.....................................>>>>>
```

## Checklist
- [ ] Added Unit Tests
- [ ] Covered by existing CI
- [ ] Integration tested
- [ ] Documentation update
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
	- Upgraded several core dependency versions from 1.5.2 to 1.6.1.
- Updated artifact metadata, including revised checksums and additional
dependency entries, to enhance concurrency handling and HTTP client
support.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->

<!-- av pr metadata
This information is embedded by the av CLI when creating PRs to track
the status of stacks when using Aviator. Please do not delete or edit
this section of the PR.
```
{"parent":"main","parentHead":"","trunk":"main"}
```
-->

---------

Co-authored-by: Thomas Chow <[email protected]>
chewy-zlai pushed a commit that referenced this pull request May 15, 2025
## Summary

Ran the canary integration tests! 

```bash

                    <-----------------------------------------------------------------------------------
                    ------------------------------------------------------------------------------------
                                                      DATAPROC LOGS
                    ------------------------------------------------------------------------------------
                    ------------------------------------------------------------------------------------>

++ cat tmp_metadata_upload.out
++ grep 'Dataproc submitter job id'
++ cut -d ' ' -f5
+ METADATA_UPLOAD_JOB_ID=0f0a7099-3f03-4487-b291-de26f3d56cdb
+ check_dataproc_job_state 0f0a7099-3f03-4487-b291-de26f3d56cdb
+ JOB_ID=0f0a7099-3f03-4487-b291-de26f3d56cdb
+ '[' -z 0f0a7099-3f03-4487-b291-de26f3d56cdb ']'
+ echo -e '\033[0;32m <<<<<<<<<<<<<<<<-----------------JOB STATUS----------------->>>>>>>>>>>>>>>>>\033[0m'
 <<<<<<<<<<<<<<<<-----------------JOB STATUS----------------->>>>>>>>>>>>>>>>>
++ gcloud dataproc jobs describe 0f0a7099-3f03-4487-b291-de26f3d56cdb --region=us-central1 --format=flattened
++ grep status.state:
+ JOB_STATE='status.state:                    DONE'
+ echo status.state: DONE
status.state: DONE
+ '[' -z 'status.state:                    DONE' ']'
+ echo -e '\033[0;32m<<<<<.....................................FETCH.....................................>>>>>\033[0m'
<<<<<.....................................FETCH.....................................>>>>>
+ touch tmp_fetch.out
+ zipline run --repo=/Users/thomaschow/zipline-ai/chronon/api/py/test/canary --mode fetch --conf=production/group_bys/gcp/purchases.v1_dev -k '{"user_id":"5"}' --name gcp.purchases.v1_dev
+ tee tmp_fetch.out
+ grep -q purchase_price_average_14d
+ cat tmp_fetch.out
+ grep purchase_price_average_14d
  "purchase_price_average_14d" : 72.5,
+ '[' 0 -ne 0 ']'
+ echo -e '\033[0;32m<<<<<.....................................SUCCEEDED!!!.....................................>>>>>\033[0m'
<<<<<.....................................SUCCEEDED!!!.....................................>>>>>
```

## Checklist
- [ ] Added Unit Tests
- [ ] Covered by existing CI
- [ ] Integration tested
- [ ] Documentation update
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
	- Upgraded several core dependency versions from 1.5.2 to 1.6.1.
- Updated artifact metadata, including revised checksums and additional
dependency entries, to enhance concurrency handling and HTTP client
support.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->

<!-- av pr metadata
This information is embedded by the av CLI when creating PRs to track
the status of stacks when using Aviator. Please do not delete or edit
this section of the PR.
```
{"parent":"main","parentHead":"","trunk":"main"}
```
-->

---------

Co-authored-by: Thomas Chow <[email protected]>
chewy-zlai pushed a commit that referenced this pull request May 16, 2025
## Summary

Ran the canary integration tests! 

```bash

                    <-----------------------------------------------------------------------------------
                    ------------------------------------------------------------------------------------
                                                      DATAPROC LOGS
                    ------------------------------------------------------------------------------------
                    ------------------------------------------------------------------------------------>

++ cat tmp_metadata_upload.out
++ grep 'Dataproc submitter job id'
++ cut -d ' ' -f5
+ METADATA_UPLOAD_JOB_ID=0f0a7099-3f03-4487-b291-de26f3d56cdb
+ cheour clients_dataproc_job_state 0f0a7099-3f03-4487-b291-de26f3d56cdb
+ JOB_ID=0f0a7099-3f03-4487-b291-de26f3d56cdb
+ '[' -z 0f0a7099-3f03-4487-b291-de26f3d56cdb ']'
+ echo -e '\033[0;32m <<<<<<<<<<<<<<<<-----------------JOB STATUS----------------->>>>>>>>>>>>>>>>>\033[0m'
 <<<<<<<<<<<<<<<<-----------------JOB STATUS----------------->>>>>>>>>>>>>>>>>
++ gcloud dataproc jobs describe 0f0a7099-3f03-4487-b291-de26f3d56cdb --region=us-central1 --format=flattened
++ grep status.state:
+ JOB_STATE='status.state:                    DONE'
+ echo status.state: DONE
status.state: DONE
+ '[' -z 'status.state:                    DONE' ']'
+ echo -e '\033[0;32m<<<<<.....................................FETCH.....................................>>>>>\033[0m'
<<<<<.....................................FETCH.....................................>>>>>
+ touch tmp_fetch.out
+ zipline run --repo=/Users/thomaschow/zipline-ai/chronon/api/py/test/canary --mode fetch --conf=production/group_bys/gcp/purchases.v1_dev -k '{"user_id":"5"}' --name gcp.purchases.v1_dev
+ tee tmp_fetch.out
+ grep -q purchase_price_average_14d
+ cat tmp_fetch.out
+ grep purchase_price_average_14d
  "purchase_price_average_14d" : 72.5,
+ '[' 0 -ne 0 ']'
+ echo -e '\033[0;32m<<<<<.....................................SUCCEEDED!!!.....................................>>>>>\033[0m'
<<<<<.....................................SUCCEEDED!!!.....................................>>>>>
```

## Cheour clientslist
- [ ] Added Unit Tests
- [ ] Covered by existing CI
- [ ] Integration tested
- [ ] Documentation update
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
	- Upgraded several core dependency versions from 1.5.2 to 1.6.1.
- Updated artifact metadata, including revised cheour clientssums and additional
dependency entries, to enhance concurrency handling and HTTP client
support.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->

<!-- av pr metadata
This information is embedded by the av CLI when creating PRs to traour clients
the status of staour clientss when using Aviator. Please do not delete or edit
this section of the PR.
```
{"parent":"main","parentHead":"","trunk":"main"}
```
-->

---------

Co-authored-by: Thomas Chow <[email protected]>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

3 participants