-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
#67 Add siq2 loc evaluation pipeline
- Loading branch information
1 parent
2a555f9
commit 02931f4
Showing
3 changed files
with
308 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,170 @@ | ||
import os | ||
import argparse | ||
import json | ||
from multiprocessing.pool import Pool | ||
|
||
|
||
def parse_args(): | ||
parser = argparse.ArgumentParser(description="question-answer-generation-using-gpt-3") | ||
parser.add_argument("--pred_path", required=True, help="The path to file containing prediction.") | ||
parser.add_argument("--output_dir", required=True, help="The path to save annotation json files.") | ||
parser.add_argument("--output_json", required=True, help="The path to save annotation final combined json file.") | ||
parser.add_argument("--num_tasks", required=True, type=int, help="Number of splits.") | ||
args = parser.parse_args() | ||
return args | ||
|
||
|
||
def annotate(prediction_set, caption_files, output_dir): | ||
""" | ||
Evaluates question and answer pairs using GPT-3 | ||
Returns a score for correctness. | ||
""" | ||
for file in caption_files: | ||
key = file[:-5] # Strip file extension | ||
qa_set = prediction_set[key] | ||
answer = qa_set['a'] | ||
pred = qa_set['pred'] | ||
# Compute the correctness score | ||
|
||
# Convert response to a Python dictionary. | ||
if answer == pred: | ||
response_dict = {'pred': 'yes', 'score': 1} | ||
else: | ||
response_dict = {'pred': 'no', 'score': 0} | ||
result_qa_pair = [response_dict, qa_set] | ||
|
||
# Save the question-answer pairs to a json file. | ||
with open(f"{output_dir}/{key}.json", "w") as f: | ||
json.dump(result_qa_pair, f) | ||
|
||
|
||
|
||
def main(): | ||
""" | ||
Main function to control the flow of the program. | ||
""" | ||
# Parse arguments. | ||
args = parse_args() | ||
|
||
file = open(args.pred_path) | ||
pred_contents = json.load(file) | ||
|
||
# Dictionary to store the count of occurrences for each video_id | ||
video_id_counts = {} | ||
new_pred_contents = [] | ||
|
||
# Iterate through each sample in pred_contents | ||
for sample in pred_contents: | ||
video_id = sample['id'] | ||
if video_id in video_id_counts: | ||
video_id_counts[video_id] += 1 | ||
else: | ||
video_id_counts[video_id] = 0 | ||
|
||
# Create a new sample with the modified key | ||
new_sample = sample | ||
new_sample['id'] = f"{video_id}_{video_id_counts[video_id]}" | ||
new_pred_contents.append(new_sample) | ||
|
||
# Generating list of id's and corresponding files | ||
id_list = [x['id'] for x in new_pred_contents] | ||
caption_files = [f"{id}.json" for id in id_list] | ||
|
||
output_dir = args.output_dir | ||
# Generate output directory if not exists. | ||
if not os.path.exists(output_dir): | ||
os.makedirs(output_dir) | ||
|
||
# Preparing dictionary of question-answer sets | ||
prediction_set = {} | ||
for sample in new_pred_contents: | ||
id = sample['id'] | ||
question = sample['question'] | ||
answer = sample['answer'] | ||
pred = sample['pred'] | ||
qa_set = {"q": question, "a": answer, "pred": pred} | ||
prediction_set[id] = qa_set | ||
|
||
# Set the OpenAI API key. | ||
# openai.a pi_key = args.api_key | ||
num_tasks = args.num_tasks | ||
|
||
# While loop to ensure that all captions are processed. | ||
while True: | ||
try: | ||
# Files that have not been processed yet. | ||
completed_files = os.listdir(output_dir) | ||
print(f"completed_files: {len(completed_files)}") | ||
|
||
# Files that have not been processed yet. | ||
incomplete_files = [f for f in caption_files if f not in completed_files] | ||
print(f"incomplete_files: {len(incomplete_files)}") | ||
|
||
# Break the loop when there are no incomplete files | ||
if len(incomplete_files) == 0: | ||
break | ||
if len(incomplete_files) <= num_tasks: | ||
num_tasks = 1 | ||
|
||
# Split tasks into parts. | ||
part_len = len(incomplete_files) // num_tasks | ||
all_parts = [incomplete_files[i:i + part_len] for i in range(0, len(incomplete_files), part_len)] | ||
task_args = [(prediction_set, part, args.output_dir) for part in all_parts] | ||
|
||
# Use a pool of workers to process the files in parallel. | ||
with Pool() as pool: | ||
pool.starmap(annotate, task_args) | ||
|
||
except Exception as e: | ||
print(f"Error: {e}") | ||
|
||
# Combine all the processed files into one | ||
combined_contents = {} | ||
json_path = args.output_json | ||
|
||
# Iterate through json files | ||
for file_name in os.listdir(output_dir): | ||
if file_name.endswith(".json") and 'results' not in file_name and 'preds' not in file_name: | ||
file_path = os.path.join(output_dir, file_name) | ||
with open(file_path, "r") as json_file: | ||
content = json.load(json_file) | ||
combined_contents[file_name[:-5]] = content | ||
|
||
# Write combined content to a json file | ||
with open(json_path, "w") as json_file: | ||
json.dump(combined_contents, json_file) | ||
print("All evaluation completed!") | ||
|
||
# Calculate average score and accuracy | ||
score_sum = 0 | ||
count = 0 | ||
yes_count = 0 | ||
no_count = 0 | ||
for key, result in combined_contents.items(): | ||
# Computing score | ||
count += 1 | ||
result_0 = result[0] | ||
score_match = result_0['score'] | ||
score = int(score_match) | ||
score_sum += score | ||
|
||
# Computing accuracy | ||
pred = result_0['pred'] | ||
pred_lower = pred.lower() | ||
if "yes" in pred_lower: | ||
yes_count += 1 | ||
elif "no" in pred_lower: | ||
no_count += 1 | ||
else: | ||
raise ValueError(f'For key={key}, there is no yes or no in the answer for result={result}') | ||
|
||
average_score = score_sum / count | ||
accuracy = yes_count / (yes_count + no_count) | ||
print("Yes count:", yes_count) | ||
print("No count:", no_count) | ||
print("Accuracy:", accuracy) | ||
print("Average score:", average_score) | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,45 @@ | ||
# evalute_loc.sh | ||
|
||
export TASK_NAME="loc" | ||
export DATASET="siq2" | ||
export SPLIT="val" # never train because why? # train, val, test | ||
export MODEL_NAME="LLaVA-Lightning-7B-v1-1" # TODO | ||
export PROJECT_ROOT="${HOME}/vtom" | ||
export EXPERIMENT_NAME="${DATASET}_${TASK_NAME}_${SPLIT}_${MODEL_NAME}" | ||
export EXPERIMENT_DIRPATH="${PROJECT_ROOT}/experiments/${EXPERIMENT_NAME}" | ||
export OUTPUT_PER_VIDEO_DIRPATH="${EXPERIMENT_DIRPATH}/output_per_video" | ||
export OUTPUT_DIRPATH="${EXPERIMENT_DIRPATH}/output" | ||
export VIDEO_DIR="${PROJECT_ROOT}/data/${DATASET}/video" | ||
export LOC_DIRPATH="${PROJECT_ROOT}/data/siq2/loc" | ||
export PRED_FPATH="preds_${EXPERIMENT_NAME}" | ||
export RESULTS_FPATH="results_${EXPERIMENT_NAME}.json" | ||
export GT_WITH_TS_FPATH="${LOC_DIRPATH}/loc_${SPLIT}_with_ts.json" | ||
export INSTRUCTION_FINETUNING_FPATH="${LOC_DIRPATH}/loc_${SPLIT}_instruction_with_ts.json" | ||
|
||
|
||
mkdir -p "${OUTPUT_PER_VIDEO_DIRPATH}" | ||
mkdir -p "${OUTPUT_DIRPATH}" | ||
|
||
|
||
python ${PROJECT_ROOT}/scripts/convert_instruction_json_to_training_format_siq2_loc.py \ | ||
--input_json_file "${LOC_DIRPATH}/loc_${SPLIT}.json" \ | ||
--output_json_file "${INSTRUCTION_FINETUNING_FPATH}" \ | ||
--gt_ts_file "${GT_WITH_TS_FPATH}" | ||
|
||
|
||
# Generate video features and predictions | ||
export NPROC_PER_NODE=2 | ||
export OMP_NUM_THREADS=$(($(nproc) / ${NPROC_PER_NODE})) | ||
PYTHONPATH="./:$PYTHONPATH" python video_chatgpt/eval/run_inference_loc.py \ | ||
--model-name "${PROJECT_ROOT}/${MODEL_NAME}" \ | ||
--video_dir "${VIDEO_DIR}" \ | ||
--gt_file_qa "${INSTRUCTION_FINETUNING_FPATH}" \ | ||
--output_dir "${OUTPUT_PER_VIDEO_DIRPATH}" \ | ||
--output_name "${PRED_FPATH}" | ||
|
||
|
||
# PYTHONPATH="./:$PYTHONPATH" python quantitative_evaluation/evaluate_loc.py \ | ||
# --pred_path "${OUTPUT_DIRPATH}/${PRED_FPATH}.json" \ | ||
# --output_dir "${OUTPUT_PER_VIDEO_DIRPATH}" \ | ||
# --output_json "${OUTPUT_DIRPATH}/${RESULTS_FPATH}" \ | ||
# --num_tasks 1 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,93 @@ | ||
from os import makedirs as os_makedirs | ||
from os.path import join as os_path_join, exists as os_path_exists | ||
from argparse import ArgumentParser | ||
from json import load as json_load, dump as json_dump | ||
from glob import glob | ||
from warnings import warn | ||
from tqdm import tqdm | ||
from torch import device as torch_device, no_grad as torch_no_grad | ||
from video_chatgpt.eval.model_utils import initialize_model, load_video | ||
from video_chatgpt.inference import video_chatgpt_infer | ||
|
||
|
||
def parse_args(): | ||
""" | ||
Parse command-line arguments. | ||
""" | ||
parser = ArgumentParser() | ||
|
||
# Define the command-line arguments | ||
parser.add_argument('--video_dir', help='Directory containing video files.', required=True) | ||
parser.add_argument('--gt_file_qa', help='Path to the ground truth file containing question.', required=True) | ||
parser.add_argument('--output_dir', help='Directory to save the model results JSON.', required=True) | ||
parser.add_argument('--output_name', help='Name of the file for storing results JSON.', required=True) | ||
parser.add_argument("--model-name", type=str, required=True) | ||
parser.add_argument("--conv-mode", type=str, required=False, default='video-chatgpt_v1') | ||
parser.add_argument("--projection_path", type=str, required=False) | ||
|
||
return parser.parse_args() | ||
|
||
|
||
@torch_no_grad() | ||
def run_inference(args): | ||
""" | ||
Run inference on ActivityNet QA DataSet using the Video-ChatGPT model. | ||
Args: | ||
args: Command-line arguments. | ||
""" | ||
# Initialize the model | ||
video_dir = args.video_dir | ||
model, vision_tower, tokenizer, image_processor, video_token_len = initialize_model(args.model_name, | ||
args.projection_path) | ||
# Load both ground truth file containing questions and answers | ||
with open(args.gt_file_qa) as file: | ||
gt_qa = json_load(file) | ||
|
||
# Create the output directory if it doesn't exist | ||
output_dir = args.output_dir | ||
if not os_path_exists(output_dir): | ||
os_makedirs(output_dir) | ||
|
||
output_list = [] # List to store the output results | ||
conv_mode = args.conv_mode | ||
|
||
device = torch_device('cuda') | ||
|
||
# Iterate over each sample in the ground truth file | ||
for question_dict in tqdm(gt_qa): | ||
conversations = question_dict['conversations'] | ||
question = conversations[0]['value'] | ||
question_id = question_dict['id'] | ||
answer = conversations[1]['value'] | ||
|
||
sample_set = {'id': question_id, 'question': question, 'answer': answer} | ||
|
||
videos_search_path = os_path_join(video_dir, question_id+'*') | ||
videos_match_list = glob(videos_search_path) | ||
if not videos_match_list: | ||
warn(f'No videos found for {videos_search_path}') | ||
continue | ||
video_fpath = videos_match_list[0] | ||
# Load the video file | ||
|
||
# Check if the video exists | ||
video_frames = load_video(video_fpath, device) | ||
|
||
try: | ||
# Run inference on the video and add the output to the list | ||
output = video_chatgpt_infer(video_frames, question, conv_mode, model, vision_tower, | ||
tokenizer, image_processor, video_token_len) | ||
sample_set['pred'] = output | ||
output_list.append(sample_set) | ||
except Exception as e: | ||
print(f"Error processing video file '{video_fpath}': {e}") | ||
|
||
# Save the output list to a JSON file | ||
with open(os_path_join(output_dir, f"{args.output_name}.json"), 'w') as file: | ||
json_dump(output_list, file) | ||
|
||
|
||
if __name__ == "__main__": | ||
args = parse_args() | ||
run_inference(args) |