Skip to content

yufengwhy/pygcn

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

No pitfalls

This pygcn implementation is the same as TensorFlow implementation in https://github.com/tkipf/gcn, fixing the differences of data splits, normalization, dropout in the official https://github.com/tkipf/pygcn. data splits in the pygcn/utils.py

Performance

  • cora: 0.820 (paper: 0.815)
  • citeseer: 0.707 (paper: 0.703)
  • pubmed: 0.794 (paper: 0.790)

Usage

python train.py --dataset cora --early_stopping 10
python train.py --dataset citeseer --early_stopping 10
python train.py --dataset pubmed --early_stopping 20
early_stopping is suggested to be 10 for cora and citeseer, 20 for pubmed.

References

PyTorch implementation of Graph Convolutional Networks (GCNs) for semi-supervised classification [1].
[1] Kipf & Welling, Semi-Supervised Classification with Graph Convolutional Networks, 2016

Requirements

  • PyTorch 0.4 or 0.5
  • Python 2.7 or 3.6

About

pygcn w/o pitfalls

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published