Skip to content

The dataset and source code for our paper: "Did You Ask a Good Question? A Cross-Domain Question IntentionClassification Benchmark for Text-to-SQL"

License

Notifications You must be signed in to change notification settings

yszh8/TriageSQL

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

TriageSQL

The dataset and source code for our paper: "Did You Ask a Good Question? A Cross-Domain Question Intention Classification Benchmark for Text-to-SQL"

Dataset Download

Due to the size limitation, please download the dataset from Google Drive.

Citations

If you want to use TriageSQL in your work, please cite as follows:

@article{zhang2020did,
  title={Did You Ask a Good Question? A Cross-Domain Question Intention Classification Benchmark for Text-to-SQL},
  author={Zhang, Yusen and Dong, Xiangyu and Chang, Shuaichen and Yu, Tao and Shi, Peng and Zhang, Rui},
  journal={arXiv preprint arXiv:2010.12634},
  year={2020}
}

Dataset

In each json file of the dataset, one can find a field called type, which includes 5 different values, including small talk, answerable, ambiguous, lack data, and unanswerable by sql, corresponding to 5 different types described in our paper. Here is the summary of our dataset and the corresponding experiment results:

Type Trainset Devset Testset Type Alias Reported F1
small talk 31160 7790 500 Improper 0.88
ambiguous 48592 9564 500 Ambiguous 0.43
lack data 90375 19566 500 ExtKnow 0.56
unanswerable by sql 124225 26330 500 Non-SQL 0.90
answerable 139884 32892 500 Answerable 0.53
overall 434236 194037 2500 TriageSQL 0.66

The folder src contains all the source files used to construct the proposed TriageSQL. In addition, some part of files contains more details about the dataset, such as databaseid which is the id of the schema in the original dataset, e.g. "flight_2" in CoSQL, while question_datasetid indicates the original dataset name of the questions, e.g. "quac". Some of the samples do not contain these fields because they are either human-annotated or edited.

Model

We also include the source code for RoBERTa baseline in our project in /model. It is a multi-classifer with 5 classes where '0' represents answerable, '1'-'4' represent distinct types of unanswerable questions. Given the dataset from Google Drive, you may need to conduct some preprocessing to obtain train/dev/test set. You can directly download from here or make your own dataset using the following instructions:

Constructing input file for the RoBERTa model

The same as /testset/test.json, our input file is a json list with shape (num_of_question, 3) containing 3 lists: query, schema, and label.

  • query: containing strings of questions
  • schema: contianing strings of schema for each question, i.e., "table_name.column_name1 | table_name.column_name2 | ... " for multi-table questions, and column_name1 | column_name2 for single-table questions.
  • labels of questions, see config.label_dict for the mapping, leave arbitary value if testing is not needed or true labels are not given.

when preprocessing, please use lower case for all data, and remove the meaningless table names as well, such as T10023-1242. Also, we sample 10k from each type to form the large input dataset

Running

After adjusting the parameters in config.py, one can simply run python train.py or python eval.py to train or evaluate the model.

Explanation of other files

  • config.py: hyper parameters
  • train.py: training and evaluation of the model
  • utils.py: loading the dataset and tokenization
  • model.py: the RoBERTa classification model we used
  • test.json: sample of test input

About

The dataset and source code for our paper: "Did You Ask a Good Question? A Cross-Domain Question IntentionClassification Benchmark for Text-to-SQL"

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages