Code for paper "Efficient Sparse Coding using Hierarchical Riemannian Pursuit," in IEEE Transactions on Signal Processing, Y. Xue, V. K. N. Lau and S. Cai, doi: 10.1109/TSP.2021.3093769.[paper]
If you find they are useful, please cite:
@ARTICLE{9470930,
author={Xue, Ye and Lau, Vincent K. N. and Cai, Songfu},
journal={IEEE Transactions on Signal Processing},
title={Efficient Sparse Coding using Hierarchical Riemannian Pursuit},
year={2021},
volume={},
number={},
pages={1-1},
doi={10.1109/TSP.2021.3093769}}
-
Matlab
-
KSVD Matlab toolbox (for Baseline 1)
Download KSVD v13 from https://www.cs.technion.ac.il/~ronrubin/software.html and install (OMP-Box v10 is required).
- SPAMS Matlab toolbox v2.6 (for Baseline 2)
Download SPAMS from http://spams-devel.gforge.inria.fr/downloads.html. Follow the steps in https://github.com/xhm1014/spams-matlab-install-on-win10 to install.
- CVX Matlab toolbox (for Baseline 4)
Download CVX toobox from http://cvxr.com/cvx/ and install.
Run Converge_sim.m
in the folder curve_convergence
.
Run Sample_sim.m
in the folder curve_samplecomplexity
.
- Unzip the .zip files in the folder
heatmap_synthetic
. - Run
Syndata_main.m
in the folderheatmap_synthetic
.
- Unzip all the .zip files in the folder
table_sensor
. - Run
Sensor_Data_main.m
in the foldertable_sensor
. - Raw data of the sensor readings of the Airly network can be downloaded from https://www.kaggle.com/datascienceairly/air-quality-data-from-extensive-network-of-sensors.