简体中文 | English
-
🔥 2022.8.09:Release YOLO series model zoo
- Comprehensive coverage of classic and latest models of the YOLO series: Including YOLOv3,Paddle real-time object detection model PP-YOLOE, and frontier detection algorithms YOLOv4, YOLOv5, YOLOX, MT-YOLOv6 and YOLOv7
- Better model performance:Upgrade based on various YOLO algorithms, shorten training time in 5-8 times and the accuracy is generally improved by 1%-5% mAP. The model compression strategy is used to achieve 30% improvement in speed without precision loss
- Complete end-to-end development support:End-to-end development pipieline including training, evaluation, inference, model compression and deployment on various hardware. Meanwhile, support flexible algorithnm switch and implement customized development efficiently
-
🔥 2022.8.01:Release PP-TinyPose plus. The end-to-end precision improves 9.1% AP in dataset of fitness and dance scenes
- Increase data of sports scenes, and the recognition performance of complex actions is significantly improved, covering actions such as sideways, lying down, jumping, and raising legs
- Detection model uses PP-PicoDet plus and the precision on COCO dataset is improved by 3.1% mAP
- The stability of keypoints is enhanced. Implement the filter stabilization method to make the video prediction result more stable and smooth.
-
2022.7.14:Release pedestrian analysis tool PP-Human v2
- Four major functions: five complicated action recognition with high performance and Flexible, real-time human attribute recognition, visitor flow statistics and high-accuracy multi-camera tracking.
- High performance algorithm: including pedestrian detection, tracking, attribute recognition which is robust to the number of targets and the variant of background and light.
- Highly Flexible: providing complete introduction of end-to-end development and optimization strategy, simple command for deployment and compatibility with different input format.
-
2022.3.24:PaddleDetection releasedrelease/2.4 version
- Release high-performanace SOTA object detection model PP-YOLOE. It integrates cloud and edge devices and provides S/M/L/X versions. In particular, Verson L has the accuracy as 51.4% on COCO test 2017 dataset, inference speed as 78.1 FPS on a single Test V100. It supports mixed precision training, 33% faster than PP-YOLOv2. Its full range of multi-sized models can meet different hardware arithmetic requirements, and adaptable to server, edge-device GPU and other AI accelerator cards on servers.
- Release ultra-lightweight SOTA object detection model PP-PicoDet Plus with 2% improvement in accuracy and 63% improvement in CPU inference speed. Add PicoDet-XS model with a 0.7M parameter, providing model sparsification and quantization functions for model acceleration. No specific post processing module is required for all the hardware, simplifying the deployment.
- Release the real-time pedestrian analysis tool PP-Human. It has four major functions: pedestrian tracking, visitor flow statistics, human attribute recognition and falling detection. For falling detection, it is optimized based on real-life data with accurate recognition of various types of falling posture. It can adapt to different environmental background, light and camera angle.
- Add YOLOX object detection model with nano/tiny/S/M/L/X. X version has the accuracy as 51.8% on COCO Val2017 dataset.
PaddleDetection is an end-to-end object detection development kit based on PaddlePaddle. Providing over 30 model algorithm and over 250 pre-trained models, it covers object detection, instance segmentation, keypoint detection, multi-object tracking. In particular, PaddleDetection offers high- performance & light-weight industrial SOTA models on servers and mobile devices, champion solution and cutting-edge algorithm. PaddleDetection provides various data augmentation methods, configurable network components, loss functions and other advanced optimization & deployment schemes. In addition to running through the whole process of data processing, model development, training, compression and deployment, PaddlePaddle also provides rich cases and tutorials to accelerate the industrial application of algorithm.
- Rich model library: PaddleDetection provides over 250 pre-trained models including object detection, instance segmentation, face recognition, multi-object tracking. It covers a variety of global competition champion schemes.
- Simple to use: Modular design, decoupling each network component, easy for developers to build and try various detection models and optimization strategies, quick access to high-performance, customized algorithm.
- Getting Through End to End: PaddlePaddle gets through end to end from data augmentation, constructing models, training, compression, depolyment. It also supports multi-architecture, multi-device deployment for cloud and edge device.
- High Performance: Due to the high performance core, PaddlePaddle has clear advantages in training speed and memory occupation. It also supports FP16 training and multi-machine training.
-
If you have any question or suggestion, please give us your valuable input via GitHub Issues
Welcome to join PaddleDetection user groups on QQ, WeChat (scan the QR code, add and reply "D" to the assistant)
Architectures | Backbones | Components | Data Augmentation |
Object DetectionInstance SegmentationFace DetectionMulti-Object-TrackingKeyPoint-Detection |
Details
|
Common
KeyPoint
FPN
Loss
Post-processing
Speed
|
Details
|
Performance comparison of Cloud models
The comparison between COCO mAP and FPS on Tesla V100 of representative models of each architectures and backbones.
Clarification:
CBResNet
stands forCascade-Faster-RCNN-CBResNet200vd-FPN
, which has highest mAP on COCO as 53.3%Cascade-Faster-RCNN
stands forCascade-Faster-RCNN-ResNet50vd-DCN
, which has been optimized to 20 FPS inference speed when COCO mAP as 47.8% in PaddleDetection modelsPP-YOLO
reached accuracy as 45.9% on COCO dataset, inference speed as 72.9 FPS on Tesla V100, higher than [YOLOv4]([2004.10934] YOLOv4: Optimal Speed and Accuracy of Object Detection) in terms of speed and accuracyPP-YOLO v2
are optimizedPP-YOLO
. It reached accuracy as 49.5% on COCO dataset, inference speed as 68.9 FPS on Tesla V100.PP-YOLOE
are optimizedPP-YOLO v2
. It reached accuracy as 51.4% on COCO dataset, inference speed as 78.1 FPS on Tesla V100- The models in the figure are available in the model library
Performance omparison on mobiles
The comparison between COCO mAP and FPS on Qualcomm Snapdragon 865 processor of models on mobile devices.
Clarification:
- Tests were conducted on Qualcomm Snapdragon 865 (4 *A77 + 4 *A55) batch_size=1, 4 thread, and NCNN inference library, test script see MobileDetBenchmark
- PP-PicoDet and PP-YOLO-Tiny are self-developed models of PaddleDetection, and other models are not tested yet.
1. General detection
PP-YOLOE series Recommended scenarios: Cloud GPU such as Nvidia V100, T4 and edge devices such as Jetson series
Model | COCO Accuracy(mAP) | V100 TensorRT FP16 Speed(FPS) | Configuration | Download |
---|---|---|---|---|
PP-YOLOE-s | 42.7 | 333.3 | Link | Download |
PP-YOLOE-m | 48.6 | 208.3 | Link | Download |
PP-YOLOE-l | 50.9 | 149.2 | Link | Download |
PP-YOLOE-x | 51.9 | 95.2 | Link | Download |
PP-PicoDet series Recommended scenarios: Mobile chips and x86 CPU devices, such as ARM CPU(RK3399, Raspberry Pi) and NPU(BITMAIN)
Model | COCO Accuracy(mAP) | Snapdragon 865 four-thread speed (ms) | Configuration | Download |
---|---|---|---|---|
PicoDet-XS | 23.5 | 7.81 | Link | Download |
PicoDet-S | 29.1 | 9.56 | Link | Download |
PicoDet-M | 34.4 | 17.68 | Link | Download |
PicoDet-L | 36.1 | 25.21 | Link | Download |
Model | COCO Accuracy(mAP) | V100 TensorRT FP16 speed(FPS) | Configuration | Download |
---|---|---|---|---|
YOLOX-l | 50.1 | 107.5 | Link | Download |
YOLOv5-l | 48.6 | 136.0 | Link | Download |
Other general purpose models doc
2. Instance segmentation
Model | Introduction | Recommended Scenarios | COCO Accuracy(mAP) | Configuration | Download |
---|---|---|---|---|---|
Mask RCNN | Two-stage instance segmentation algorithm | Edge-Cloud end |
box AP: 41.4 mask AP: 37.5 |
Link | Download |
Cascade Mask RCNN | Two-stage instance segmentation algorithm | Edge-Cloud end |
box AP: 45.7 mask AP: 39.7 |
Link | Download |
SOLOv2 | Lightweight single-stage instance segmentation algorithm | Edge-Cloud end |
mask AP: 38.0 | Link | Download |
3. Keypoint detection
Model | Introduction | Recommended scenarios | COCO Accuracy(AP) | Speed | Configuration | Download |
---|---|---|---|---|---|---|
HRNet-w32 + DarkPose | Top-down Keypoint detection algorithm Input size: 384x288 |
Edge-Cloud end |
78.3 | T4 TensorRT FP16 2.96ms | Link | Download |
HRNet-w32 + DarkPose | Top-down Keypoint detection algorithm Input size: 256x192 |
Edge-Cloud end | 78.0 | T4 TensorRT FP16 1.75ms | Link | Download |
PP-TinyPose | Light-weight keypoint algorithm Input size: 256x192 |
Mobile | 68.8 | Snapdragon 865 four-thread 6.30ms | Link | Download |
PP-TinyPose | Light-weight keypoint algorithm Input size: 128x96 |
Mobile | 58.1 | Snapdragon 865 four-thread 2.37ms | Link | Download |
Other keypoint detection models doc
4. Multi-object tracking PP-Tracking
Model | Introduction | Recommended scenarios | Accuracy | Configuration | Download |
---|---|---|---|---|---|
DeepSORT | SDE Multi-object tracking algorithm, independent ReID models | Edge-Cloud end | MOT-17 half val: 66.9 | Link | Download |
ByteTrack | SDE Multi-object tracking algorithm with detection model only | Edge-Cloud end | MOT-17 half val: 77.3 | Link | Download |
JDE | JDE multi-object tracking algorithm multi-task learning | Edge-Cloud end | MOT-16 test: 64.6 | Link | Download |
FairMOT | JDE multi-object tracking algorithm multi-task learning | Edge-Cloud end | MOT-16 test: 75.0 | Link | Download |
Other multi-object tracking models docs
5. Industrial real-time pedestrain analysis tool-PP Human
Function \ Model | Obejct detection | Multi- object tracking | Attribute recognition | Keypoint detection | Action recognition | ReID |
---|---|---|---|---|---|---|
Pedestrian Detection | ✅ | |||||
Pedestrian Tracking | ✅ | |||||
Attribute Recognition (Image) | ✅ | ✅ | ||||
Attribute Recognition (Video) | ✅ | |||||
Falling Detection | ✅ | ✅ | ✅ | |||
ReID | ✅ | ✅ | ||||
Accuracy | mAP 56.3 | MOTA 72.0 | mA 94.86 | AP 87.1 | AP 96.43 | mAP 98.8 |
T4 TensorRT FP16 Inference speed | 28.0ms | 33.1ms | Single person 2ms | Single person 2.9ms | Single person 2.7ms | Single person 1.5ms |
Click “ ✅ ” to download
- Installation
- Quick start
- Data preparation
- Geting Started on PaddleDetection
- [Customize data training]((docs/tutorials/CustomizeDataTraining.md)
- [FAQ]((docs/tutorials/FAQ)
-
Configuration
-
Compression based on PaddleSlim
-
Advanced development
-
[Theoretical foundation] Object detection 7-day camp: Overview of object detection tasks, details of RCNN series object detection algorithm and YOLO series object detection algorithm, PP-YOLO optimization strategy and case sharing, introduction and practice of AnchorFree series algorithm
-
[Industrial application] AI Fast Track industrial object detection technology and application: Super object detection algorithms, real-time pedestrian analysis system PP-Human, breakdown and practice of object detection industrial application
-
[Industrial features] 2022.3.26 Smart City Industry Seven-Day Class : Urban planning, Urban governance, Smart governance service, Traffic management, community governance.
- Deployment of PaddleDetection for Windows I
- Deployment of PaddleDetection for Windows II
- Deployment of PaddleDetection on Jestson Nano
- How to deploy YOLOv3 model on Raspberry Pi for Helmet detection
- Use SSD-MobileNetv1 for a project -- From dataset to deployment on Raspberry Pi
Please refer to the Release note for more details about the updates
PaddlePaddle is provided under the Apache 2.0 license
We appreciate your contributions and your feedback!
- Thank Mandroide for code cleanup and
- Thank FL77N for
Sparse-RCNN
model - Thank Chen-Song for
Swin Faster-RCNN
model - Thank yangyudong, hchhtc123 for developing PP-Tracking GUI interface
- Thank Shigure19 for developing PP-TinyPose fitness APP
- Thank manangoel99 for Wandb visualization methods
@misc{ppdet2019,
title={PaddleDetection, Object detection and instance segmentation toolkit based on PaddlePaddle.},
author={PaddlePaddle Authors},
howpublished = {\url{https://github.com/PaddlePaddle/PaddleDetection}},
year={2019}
}