Skip to content

Commit

Permalink
add Kaminskyj & Materka 1995 #5
Browse files Browse the repository at this point in the history
  • Loading branch information
ybayle committed May 1, 2019
1 parent d609105 commit 4dd6bf5
Show file tree
Hide file tree
Showing 8 changed files with 44 additions and 5 deletions.
9 changes: 5 additions & 4 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -39,6 +39,7 @@ However, these surveys do not cover music information retrieval tasks that are i
| 1989 | [Algorithms for music composition by neural nets: Improved CBR paradigms](https://quod.lib.umich.edu/cgi/p/pod/dod-idx/algorithms-for-music-composition.pdf?c=icmc;idno=bbp2372.1989.044;format=pdf) | No |
| 1989 | [A connectionist approach to algorithmic composition](http://www.jstor.org/stable/3679551) | No |
| 1994 | [Neural network music composition by prediction: Exploring the benefits of psychoacoustic constraints and multi-scale processing](http://www-labs.iro.umontreal.ca/~pift6080/H09/documents/papers/mozer-music.pdf) | No |
| 1995 | [Automatic source identification of monophonic musical instrument sounds](https://www.researchgate.net/publication/3622871_Automatic_source_identification_of_monophonic_musical_instrument_sounds) | No |
| 1995 | [Neural network based model for classification of music type](http://ieeexplore.ieee.org/abstract/document/514161/) | No |
| 1997 | [A machine learning approach to musical style recognition](http://repository.cmu.edu/cgi/viewcontent.cgi?article=1496&context=compsci) | No |
| 1998 | [Recognition of music types](https://www.ri.cmu.edu/pub_files/pub1/soltau_hagen_1998_2/soltau_hagen_1998_2.pdf) | No |
Expand Down Expand Up @@ -70,7 +71,7 @@ However, these surveys do not cover music information retrieval tasks that are i
| 2014 | [Boundary detection in music structure analysis using convolutional neural networks](https://dav.grrrr.org/public/pub/ullrich_schlueter_grill-2014-ismir.pdf) | No |
| 2014 | [Improving content-based and hybrid music recommendation using deep learning](http://www.smcnus.org/wp-content/uploads/2014/08/reco_MM14.pdf) | No |
| 2014 | [A deep representation for invariance and music classification](http://www.mirlab.org/conference_papers/International_Conference/ICASSP%202014/papers/p7034-zhang.pdf) | No |
| 2015 | [Auralisation of deep convolutional neural networks: Listening to learned features](http://ismir2015.uma.es/LBD/LBD24.pdf) | [Github](https://github.com/keunwoochoi/Auralisation) |
| 2015 | [Auralisation of deep convolutional neural networks: Listening to learned features](http://ismir2015.uma.es/LBD/LBD24.pdf) | [GitHub](https://github.com/keunwoochoi/Auralisation) |
| 2015 | [Downbeat tracking with multiple features and deep neural networks](http://perso.telecom-paristech.fr/~grichard/Publications/2015-durand-icassp.pdf) | No |
| 2015 | [Music boundary detection using neural networks on spectrograms and self-similarity lag matrices](http://www.ofai.at/~jan.schlueter/pubs/2015_eusipco.pdf) | No |
| 2015 | [Classification of spatial audio location and content using convolutional neural networks](https://www.researchgate.net/profile/Toni_Hirvonen/publication/276061831_Classification_of_Spatial_Audio_Location_and_Content_Using_Convolutional_Neural_Networks/links/5550665908ae12808b37fe5a/Classification-of-Spatial-Audio-Location-and-Content-Using-Convolutional-Neural-Networks.pdf) | No |
Expand Down Expand Up @@ -237,11 +238,11 @@ Each entry in [dl4m.bib](dl4m.bib) also displays additional information:

## Statistics and visualisations

- 159 papers referenced. See the details in [dl4m.bib](dl4m.bib).
- 160 papers referenced. See the details in [dl4m.bib](dl4m.bib).
There are more papers from 2017 than any other years combined.
Number of articles per year:
![Number of articles per year](fig/articles_per_year.png)
- If you are applying DL to music, there are [327 other researchers](authors.md) in your field.
- If you are applying DL to music, there are [329 other researchers](authors.md) in your field.
- 33 tasks investigated. See the list of [tasks](tasks.md).
Tasks pie chart:
![Tasks pie chart](fig/pie_chart_task.png)
Expand All @@ -254,7 +255,7 @@ Architectures pie chart:
- 9 frameworks used. See the list of [frameworks](frameworks.md).
Frameworks pie chart:
![Frameworks pie chart](fig/pie_chart_framework.png)
- Only 41 articles (25%) provide their source code.
- Only 42 articles (26%) provide their source code.
Repeatability is the key to good science, so check out the [list of useful resources on reproducibility for MIR and ML](reproducibility.md).

[Go back to top](https://github.com/ybayle/awesome-deep-learning-music#deep-learning-for-music-dl4m-)
Expand Down
2 changes: 2 additions & 0 deletions authors.md
Original file line number Diff line number Diff line change
Expand Up @@ -124,6 +124,7 @@
- Jeong, Il-Young
- Kakade, Sham M.
- Kaliappan, Mala
- Kaminsky, I.
- Kavcic, Alenka
- Keefe, Douglas H.
- Kelz, Rainer
Expand Down Expand Up @@ -174,6 +175,7 @@
- Malik, Miroslav
- Marolt, Matija
- Martel Baro, Héctor
- Materka, Andrzej
- Mathulaprangsan, Seksan
- Matityaho, Benyamin
- McFee, Brian
Expand Down
35 changes: 35 additions & 0 deletions dl4m.bib
Original file line number Diff line number Diff line change
Expand Up @@ -79,6 +79,40 @@ @article{Mozer1999
year = {1994}
}

@inproceedings{Kaminsky1995,
activation = {Sigmoid},
address = {Perth, WA, Australia, Australia},
architecture = {No},
author = {Kaminsky, I. and Materka, Andrzej},
batch = {No},
booktitle = {IEEE_ICNN},
code = {No},
computationtime = {No},
dataaugmentation = {No},
dataset = {Inhouse},
dimension = {1D},
doi = {10.1109/ICNN.1995.488091},
dropout = {No},
epochs = {No},
framework = {No},
gpu = {No},
input = {Raw audio},
layers = {1},
learningrate = {0.25},
link = {https://www.researchgate.net/publication/3622871_Automatic_source_identification_of_monophonic_musical_instrument_sounds},
loss = {No},
metric = {No},
momentum = {0.15},
month = {Nov.},
note = {https://ieeexplore.ieee.org/document/488091},
optimizer = {No},
pages = {189-194 vol.1},
reproducible = {No},
task = {Instrument recognition},
title = {Automatic source identification of monophonic musical instrument sounds},
year = {1995}
}

@inproceedings{Matityaho1995,
address = {Israel},
author = {Matityaho, Benyamin and Furst, Miriam},
Expand Down Expand Up @@ -523,6 +557,7 @@ @inproceedings{Zhang2014
@inproceedings{Choi2015,
author = {Choi, Keunwoo and Fazekas, György and Sandler, Mark Brian and Kim, Jeonghee},
booktitle = {ISMIR},
code = {https://github.com/keunwoochoi/Auralisation},
dataset = {Inhouse},
input = {STFT},
link = {http://ismir2015.uma.es/LBD/LBD24.pdf},
Expand Down
3 changes: 2 additions & 1 deletion dl4m.tsv
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@ Year Entrytype Title Author Link Code Task Reproducible Dataset Framework Archit
1989 inproceedings Algorithms for music composition by neural nets: Improved CBR paradigms Lewis, J. P. https://quod.lib.umich.edu/cgi/p/pod/dod-idx/algorithms-for-music-composition.pdf?c=icmc;idno=bbp2372.1989.044;format=pdf Composition
1989 article A connectionist approach to algorithmic composition Todd, Peter M. http://www.jstor.org/stable/3679551 Composition
1994 article Neural network music composition by prediction: Exploring the benefits of psychoacoustic constraints and multi-scale processing Mozer, Michael C. http://www-labs.iro.umontreal.ca/~pift6080/H09/documents/papers/mozer-music.pdf Composition
1995 inproceedings Automatic source identification of monophonic musical instrument sounds Kaminsky, I. and Materka, Andrzej https://www.researchgate.net/publication/3622871_Automatic_source_identification_of_monophonic_musical_instrument_sounds No Instrument recognition No Inhouse No No No No No No Raw audio 1D Sigmoid No 0.25 No No
1995 inproceedings Neural network based model for classification of music type Matityaho, Benyamin and Furst, Miriam http://ieeexplore.ieee.org/abstract/document/514161/ MGR
1997 inproceedings A machine learning approach to musical style recognition Dannenberg, Roger B and Thom, Belinda and Watson, David http://repository.cmu.edu/cgi/viewcontent.cgi?article=1496&context=compsci MSR
1998 inproceedings Recognition of music types Soltau, Hagen and Schultz, Tanja and Westphal, Martin and Waibel, Alex https://www.ri.cmu.edu/pub_files/pub1/soltau_hagen_1998_2/soltau_hagen_1998_2.pdf No MGR No Inhouse No DNN No No No No 10x5 cepstral coefficients 2D No No No No No
Expand Down Expand Up @@ -37,7 +38,7 @@ Year Entrytype Title Author Link Code Task Reproducible Dataset Framework Archit
2014 inproceedings Boundary detection in music structure analysis using convolutional neural networks Ullrich, Karen and Schlüter, Jan and Grill, Thomas https://dav.grrrr.org/public/pub/ullrich_schlueter_grill-2014-ismir.pdf Boundary detection [SALAMI](http://ddmal.music.mcgill.ca/research/salami/annotations) Mel-spectrogram Cross-entropy
2014 inproceedings Improving content-based and hybrid music recommendation using deep learning Wang, Xinxi and Wang, Ye http://www.smcnus.org/wp-content/uploads/2014/08/reco_MM14.pdf Recommendation [Echo Nest Taste Profile Subset](https://labrosa.ee.columbia.edu/millionsong/tasteprofile) & [7digital](https://7digital.com) Theano DBN No 15 nodes of 2 Tesla M2090
2014 inproceedings A deep representation for invariance and music classification Zhang, Chiyuan and Evangelopoulos, Georgios and Voinea, Stephen and Rosasco, Lorenzo and Poggio, Tomaso http://www.mirlab.org/conference_papers/International_Conference/ICASSP%202014/papers/p7034-zhang.pdf MGR [GTzan](http://marsyas.info/downloads/datasets.html) CNN
2015 inproceedings Auralisation of deep convolutional neural networks: Listening to learned features Choi, Keunwoo and Fazekas, György and Sandler, Mark Brian and Kim, Jeonghee http://ismir2015.uma.es/LBD/LBD24.pdf MGR Inhouse STFT
2015 inproceedings Auralisation of deep convolutional neural networks: Listening to learned features Choi, Keunwoo and Fazekas, György and Sandler, Mark Brian and Kim, Jeonghee http://ismir2015.uma.es/LBD/LBD24.pdf https://github.com/keunwoochoi/Auralisation MGR Inhouse STFT
2015 inproceedings Downbeat tracking with multiple features and deep neural networks Durand, Simon and Bello, Juan Pablo and David, Bertrand and Richard, Gaël http://perso.telecom-paristech.fr/~grichard/Publications/2015-durand-icassp.pdf Beat detection
2015 inproceedings Music boundary detection using neural networks on spectrograms and self-similarity lag matrices Grill, Thomas and Schlüter, Jan http://www.ofai.at/~jan.schlueter/pubs/2015_eusipco.pdf Boundary detection [SALAMI](http://ddmal.music.mcgill.ca/research/salami/annotations) STFT
2015 inproceedings Classification of spatial audio location and content using convolutional neural networks Hirvonen, Toni https://www.researchgate.net/profile/Toni_Hirvonen/publication/276061831_Classification_of_Spatial_Audio_Location_and_Content_Using_Convolutional_Neural_Networks/links/5550665908ae12808b37fe5a/Classification-of-Spatial-Audio-Location-and-Content-Using-Convolutional-Neural-Networks.pdf
Expand Down
Binary file modified fig/articles_per_year.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified fig/pie_chart_architecture.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified fig/pie_chart_dataset.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified fig/pie_chart_framework.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.

0 comments on commit 4dd6bf5

Please sign in to comment.