Skip to content

yandex-research/specexec

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SpecExec

This repository contains the supplementary code for the paper "SpecExec: Massively Parallel Speculative Decoding For Interactive LLM Inference on Consumer Devices" (arXiv).

Launching experiements

The main experiments script is run_exp.py. By default, it uses:

  • TinyLlama/TinyLlama-1.1B-Chat-v1.0 for draft model
  • meta-llama/Llama-2-7b-chat-hf for the target model.
  • --temperature 1.0 --top_p 1.0
  • oasst dataset for prompts
  • no offloading (activated by --offload argument)

SpecExec on OpenAssistant data (--gen_type SpecExecBase):

python run_exp.py --top_p 0.9 --temperature 0.6 --gen_type SpecExecBase --max_budget="16, 32, 64, 128, 256, 512, 1024" --n_tests=10 --exp_name="SX_sample"

SpecInfer on OpenAssistant data (--gen_type SI):

python run_exp.py --temperature 0.6 --top_p 0.9 --gen_type SI --max_beam_len="8, 16, 32" --max_n_beams="8, 16, 32" --exp_name="SI_sample"

For offloaded inference, add --offload:

python run_exp.py --top_p 0.9 --temperature 0.6 --gen_type SpecExecBase --max_budget="16, 32, 64, 128, 256, 512, 1024" --n_tests=10 --offload --exp_name="SX_sample_offload"

Ablation test with different models:

python run_exp.py --top_p 0.9 --temperature 0.6 --gen_type SpecExecBase --model_0 "TheBloke/Mistral-7B-Instruct-v0.2-GPTQ" --model_1 "TheBloke/Mixtral-8x7B-Instruct-v0.1-GPTQ" --max_n_beams=128 --max_budget="16,32,64,128,256,512,1024,2048,4096"  --n_tests=10 --exp_name="SX2_mixtral"

Benchnark run without speculative decodng, use --zero:

  • python run_exp.py --top_p 0.9 --temperature 0.6 --zero --n_tests=10
  • python run_exp.py --top_p 0.9 --temperature 0.6 --offload --zero --n_tests=10
  • python run_exp.py --model_0 "TheBloke/Mistral-7B-Instruct-v0.2-GPTQ" --model_1 "TheBloke/Mixtral-8x7B-Instruct-v0.1-GPTQ" --offload --zero --n_tests=10

During the run, the script will log individual test results to stdout and to the logfile located in ./logs/[exp_name]. In the end, the summary result is displayed as a table:

-------------------------------------------------------------------------------------------------------------------------
       S U M M A R Y   R E S U L T S   
-------------------------------------------------------------------------------------------------------------------------
   beams  max_h  budget minLP  branch      t0      t1  tree_h  tree_size  min_CLP  exp_time  gen_rate  gen_speed  mem_use
0    128    256     512  None      64  0.3725  1.7811    20.2      512.0    -6.62    176.66      7.99      3.678     9.94
1    128    256     256  None      64  0.2728  1.6232    17.8      256.0    -5.91    158.85      7.65      4.009     9.54
2    128    256     128  None      64  0.2059  1.5336    15.2      128.0    -5.09    152.40      6.68      3.814     9.42
-------------------------------------------------------------------------------------------------------------------------

Here, gen_rate represents the average number of tokens accepted per draft tree and gen_speed is the average number of tokens generated per second.

citation reference

@misc{svirschevski2024specexec,
      title={SpecExec: Massively Parallel Speculative Decoding for Interactive LLM Inference on Consumer Devices}, 
      author={Ruslan Svirschevski and Avner May and Zhuoming Chen and Beidi Chen and Zhihao Jia and Max Ryabinin},
      year={2024},
      eprint={2406.02532},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages