Skip to content

This can construct the tight-binding model and calculate energies

License

Notifications You must be signed in to change notification settings

y-javanmard/TightBinding.jl

 
 

Repository files navigation

Build Status Coverage Status

TightBinding.jl

This can construct the tight-binding model and calculate energies in Julia 1.0. This software is released under the MIT License, see LICENSE. We checked that it works in Julia 1.7.

This can

  1. construct the Hamiltonian as a functional of a momentum k.
  2. plot the band structure.
  3. show the crystal structure.
  4. plot the band structure of the finite-width system with one surface or boundary.
  5. [09 Feb. 2019] make surface Hamiltonian from the momentum space Hamiltonian.
  6. [19 Nov. 2019] get DOS data and energy mesh
  7. [22 Jun. 2020] construct a supercell model
  8. [EXPERIMENTAL][22 Jun. 2020] write Wannier90 format.

There is the sample jupyter notebook.

Install

Push "]" to enter the package mode.

add TightBinding

samples

Graphene

Here is a Graphene case

using TightBinding
#Primitive vectors
a1 = [sqrt(3)/2,1/2]
a2= [0,1]
#set lattice
la = set_Lattice(2,[a1,a2])
#add atoms
add_atoms!(la,[1/3,1/3])
add_atoms!(la,[2/3,2/3])

Then we added two atoms (atom 1 and atom 2). We can see the possible hoppings.

show_neighbors(la)

Output is

Possible hoppings
(1,1), x:-1//1, y:-1//1
(1,2), x:-2//3, y:-2//3
(2,2), x:-1//1, y:-1//1
(1,1), x:-1//1, y:0//1
(1,2), x:-2//3, y:1//3
(2,2), x:-1//1, y:0//1
(1,1), x:-1//1, y:1//1
(1,2), x:-2//3, y:4//3
(2,2), x:-1//1, y:1//1
(1,1), x:0//1, y:-1//1
(1,2), x:1//3, y:-2//3
(2,2), x:0//1, y:-1//1
(1,1), x:0//1, y:0//1
(1,2), x:1//3, y:1//3
(2,2), x:0//1, y:0//1
(1,1), x:0//1, y:1//1
(1,2), x:1//3, y:4//3
(2,2), x:0//1, y:1//1
(1,1), x:1//1, y:-1//1
(1,2), x:4//3, y:-2//3
(2,2), x:1//1, y:-1//1
(1,1), x:1//1, y:0//1
(1,2), x:4//3, y:1//3
(2,2), x:1//1, y:0//1
(1,1), x:1//1, y:1//1
(2,2), x:1//1, y:1//1

If you want to construct the Graphene, you choose hoppings from atom 1 to atom 2:

#construct hoppings
t = 1.0
add_hoppings!(la,-t,1,2,[1/3,1/3])
add_hoppings!(la,-t,1,2,[-2/3,1/3])
add_hoppings!(la,-t,1,2,[1/3,-2/3])
using Plots
#show the lattice structure
plot_lattice_2d(la)

68747470733a2f2f71696974612d696d6167652d73746f72652e73332e616d617a6f6e6177732e636f6d2f302f3234363131332f37346633306563662d356137632d643337362d393235642d6561663563343634376362632e706e67

using Plots
# Density of states
nk = 100 #numer ob meshes. nk^d meshes are used. d is a dimension.
plot_DOS(la, nk)

68747470733a2f2f71696974612d696d6167652d73746f72652e73332e616d617a6f6e6177732e636f6d2f302f3234363131332f39343635643263312d643466332d333634372d363036652d3836626263313462313530622e706e67

[19 Nov. 2019] We can get DOS data and energy mesh.

nk = 100 #numer ob meshes. nk^d meshes are used. d is a dimension.
hist = get_DOS(la, nk)
println(hist.weights) #DOS data
println(hist.edges[1]) #energy mesh
using Plots
plot(hist.edges[1][2:end] .- hist.edges[1].step.hi/2,hist.weights)
#show the band structure
klines = set_Klines()
kmin = [0,0]
kmax = [2π/sqrt(3),0]
add_Kpoints!(klines,kmin,kmax,"G","K")

kmin = [2π/sqrt(3),0]
kmax = [2π/sqrt(3),2π/3]
add_Kpoints!(klines,kmin,kmax,"K","M")

kmin = [2π/sqrt(3),2π/3]
kmax = [0,0]
add_Kpoints!(klines,kmin,kmax,"M","G")
calc_band_plot(klines,la)

68747470733a2f2f71696974612d696d6167652d73746f72652e73332e616d617a6f6e6177732e636f6d2f302f3234363131332f32616530653833392d633239642d333166332d336533332d3136343164376431636230382e706e67

Graphene nano-ribbon

using Plots
#We have already constructed atoms and hoppings.
#We add the line to plot
klines = set_Klines()
kmin = [-π]
kmax = [π]
add_Kpoints!(klines,kmin,kmax,"-pi","pi")
#We consider the periodic boundary condition along the primitive vector
direction = 1
#Periodic boundary condition
calc_band_plot_finite(klines,la,direction,periodic=true)

68747470733a2f2f71696974612d696d6167652d73746f72652e73332e616d617a6f6e6177732e636f6d2f302f3234363131332f66323033656365632d393835322d303931612d336332382d3662633463386138356666312e706e67

#We introduce the surface perpendicular to the premitive vector
direction = 1
#Open boundary condition
calc_band_plot_finite(klines,la,direction,periodic=false)

68747470733a2f2f71696974612d696d6167652d73746f72652e73332e616d617a6f6e6177732e636f6d2f302f3234363131332f36313038363162632d316538302d343364632d303064322d3035643237663865383435652e706e67

Fe-based superconductor

We construct two-band model for Fe-based superconductor [S. Rachu et al. Phys. Rev. B 77, 220503(R) (2008)].

la = set_Lattice(2,[[1,0],[0,1]]) #Square lattice
add_atoms!(la,[0,0]) #dxz orbital
add_atoms!(la,[0,0]) #dyz orbital
#hoppings
t1 = -1.0
t2 = 1.3
t3 = -0.85
t4 = t3
μ = 1.45

#dxz
add_hoppings!(la,-t1,1,1,[1,0])
add_hoppings!(la,-t2,1,1,[0,1])
add_hoppings!(la,-t3,1,1,[1,1])
add_hoppings!(la,-t3,1,1,[1,-1])

#dyz
add_hoppings!(la,-t2,2,2,[1,0])
add_hoppings!(la,-t1,2,2,[0,1])
add_hoppings!(la,-t3,2,2,[1,1])
add_hoppings!(la,-t3,2,2,[1,-1])

#between dxz and dyz
add_hoppings!(la,-t4,1,2,[1,1])
add_hoppings!(la,-t4,1,2,[-1,-1])
add_hoppings!(la,t4,1,2,[1,-1])
add_hoppings!(la,t4,1,2,[-1,1])

#Chemical potentials
set_μ!(la,μ) #set the chemical potential

To see the band structure, we use

klines = set_Klines()
kmin = [0,0]
kmax = [π,0]
add_Kpoints!(klines,kmin,kmax,"(0,0)","(pi,0)")

kmin = [π,0]
kmax = [π,π]
add_Kpoints!(klines,kmin,kmax,"(pi,0)","(pi,pi)")

kmin = [π,π]
kmax = [0,0]
add_Kpoints!(klines,kmin,kmax,"(pi,pi)","(0,0)")

using Plots
pls = calc_band_plot(klines,la)

Then, we have the band structure:

fe

We can obtain the Hamiltonian:

ham = hamiltonian_k(la) #we can obtain the function "ham([kx,ky])".
kx = 0.1
ky = 0.2
hamk = ham([kx,ky]) #ham is a functional of k=[kx,ky].
println(hamk)

Fe-based superconductor: 5 orbital model

Finally, we show the 5-orbital model proposed by K. Kuroki et al.[K. Kuroki et al., Phys. Rev. Lett. 101, 087004 (2008)]. The sample code is

la = set_Lattice(2,[[1,0],[0,1]])
add_atoms!(la,[0,0])
add_atoms!(la,[0,0])
add_atoms!(la,[0,0])
add_atoms!(la,[0,0])
add_atoms!(la,[0,0])

tmat = [
-0.7    0 -0.4  0.2 -0.1
-0.8    0    0    0    0
 0.8 -1.5    0    0 -0.3
   0  1.7    0    0 -0.1
-3.0    0    0 -0.2    0
-2.1  1.5    0    0    0
 1.3    0  0.2 -0.2    0
 1.7    0    0  0.2    0
-2.5  1.4    0    0    0
-2.1  3.3    0 -0.3  0.7
 1.7  0.2    0  0.2    0
 2.5    0    0  0.3    0
 1.6  1.2 -0.3 -0.3 -0.3
   0    0    0 -0.1    0
 3.1 -0.7 -0.2    0    0
]
tmat = 0.1.*tmat
imap = zeros(Int64,5,5)
count = 0
for μ=1:5
    for ν=μ:5
        count += 1
        imap[μ,ν] = count
    end
end
Is = [1,-1,-1,1,1,1,1,-1,-1,1,-1,-1,1,1,1]
σds = [1,-1,1,1,-1,1,-1,-1,1,1,1,-1,1,-1,1]
tmat_σy = tmat[:,:]
tmat_σy[imap[1,2],:] = -tmat[imap[1,3],:]
tmat_σy[imap[1,3],:] = -tmat[imap[1,2],:]
tmat_σy[imap[1,4],:] = -tmat[imap[1,4],:]
tmat_σy[imap[2,2],:] = tmat[imap[3,3],:]
tmat_σy[imap[2,4],:] = tmat[imap[3,4],:]
tmat_σy[imap[2,5],:] = -tmat[imap[3,5],:]
tmat_σy[imap[3,3],:] = tmat[imap[2,2],:]
tmat_σy[imap[3,4],:] = tmat[imap[2,4],:]
tmat_σy[imap[3,5],:] = -tmat[imap[2,5],:]
tmat_σy[imap[4,5],:] = -tmat[imap[4,5],:]

hoppingmatrix = zeros(Float64,5,5,5,5)
hops = [-2,-1,0,1,2]
hopelements = [[1,0],[1,1],[2,0],[2,1],[2,2]]

for μ = 1:5
    for ν=μ:5
        for ii=1:5
            ihop = hopelements[ii][1]
            jhop = hopelements[ii][2]
            #[a,b],[a,-b],[-a,-b],[-a,b],[b,a],[b,-a],[-b,a],[-b,-a]

            #[a,b]
            i = ihop +3
            j = jhop +3
            hoppingmatrix[μ,ν,i,j]=tmat[imap[μ,ν],ii]
            #[a,-b] = σy*[a,b] [1,1] -> [1,-1]
            if jhop != 0
                i = ihop +3
                j = -jhop +3
                hoppingmatrix[μ,ν,i,j]=tmat_σy[imap[μ,ν],ii]
            end

            if μ != ν
                #[-a,-b] = I*[a,b] [1,1] -> [-1,-1],[1,0]->[-1,0]
                i = -ihop +3
                j = -jhop +3
                hoppingmatrix[μ,ν,i,j]=Is[imap[μ,ν]]*tmat[imap[μ,ν],ii]
                #[-a,b] = I*[a,-b] = I*σy*[a,b]  #[2,0]->[-2,0]
                if jhop != 0
                    i = -ihop +3
                    j = jhop +3
                    hoppingmatrix[μ,ν,i,j]=Is[imap[μ,ν]]*tmat_σy[imap[μ,ν],ii]
                end
            end
            #[b,a],[b,-a],[-b,a],[-b,-a]
            if jhop != ihop
                #[b,a] = σd*[a,b]
                i = jhop +3
                j = ihop +3
                hoppingmatrix[μ,ν,i,j]=σds[imap[μ,ν]]*tmat[imap[μ,ν],ii]
                #[-b,a] = σd*σy*[a,b]
                if jhop != 0
                    i = -jhop +3
                    j = ihop +3
                    hoppingmatrix[μ,ν,i,j]=σds[imap[μ,ν]]*tmat_σy[imap[μ,ν],ii]
                end

                if μ != ν
                    #[-b,-a] = σd*[-a,-b] = σd*I*[a,b]
                    i = -jhop +3
                    j = -ihop +3
                    hoppingmatrix[μ,ν,i,j]=σds[imap[μ,ν]]*Is[imap[μ,ν]]*tmat[imap[μ,ν],ii]
                    #[b,-a] = σd*[-a,b] = σd*I*[a,-b] = σd*I*σy*[a,b]  #[2,0]->[-2,0]
                    if jhop != 0
                        i = jhop +3
                        j = -ihop +3
                        hoppingmatrix[μ,ν,i,j]=σds[imap[μ,ν]]*Is[imap[μ,ν]]*tmat_σy[imap[μ,ν],ii]
                    end
                end
            end
        end


    end
end

for μ=1:5
    for ν=μ:5
        for i = 1:5
            ih = hops[i]
            for j = 1:5
                jh = hops[j]
                if hoppingmatrix[μ,ν,i,j] != 0.0                
                    add_hoppings!(la,hoppingmatrix[μ,ν,i,j],μ,ν,[ih,jh])
                end
            end
        end
    end
end

onsite = [10.75,10.96,10.96,11.12,10.62]
set_onsite!(la,onsite)

set_μ!(la,10.96) #set the chemical potential

Then, we plot the band structure

nk = 100
klines = set_Klines()
kmin = [0,0]
kmax = [π,0]
add_Kpoints!(klines,kmin,kmax,"(0,0)","(pi,0)",nk=nk)

kmin = [π,0]
kmax = [π,π]
add_Kpoints!(klines,kmin,kmax,"(pi,0)","(pi,pi)",nk=nk)

kmin = [π,π]
kmax = [0,0]
add_Kpoints!(klines,kmin,kmax,"(pi,pi)","(0,0)",nk=nk)

using Plots
pls = calc_band_plot(klines,la)
savefig("Fe5band.png")

We have the band structure:

fe5band

This figure is consistent with Fig.2 in the paper where the hopping table is used [T. Nomura, J. Phys. Soc. Jpn. 78, 034716 (2009)].

The Fermi surface is given by

pls = plot_fermisurface_2D(la)

fefermi

[09 Feb. 2019] Making surface Hamiltonian from the momentum space Hamiltonian

If we have the Hamiltonian defined in momentum space, we can construct the surface Hamiltonian. For example, we consider a model of 2D topological insulator:

using TightBinding
Ax = 1
Ay = 1
m2x = 1
m2y = m2x
m0 = -2*m2x
m(k) = m0 + 2m2x*(1-cos(k[1]))+2m2y*(1-cos(k[2]))
Hk(k) = Ax*sin(k[1]).*σx +  Ay*sin(k[2]).*σy + m(k).*σz
norb = 2 #The size of the matrix

Now, when you use TightBinding.jl, the Pauli matrices σx,σy,σz,σ0 are defined. Then,

hamiltonian = surfaceHamiltonian(Hk,norb,numhop=3,L=32,kpara="kx",BC="OBC")

makes the function hamiltonian(k). We can choose open boundary condition OBC or periodic boundary condition PBC. numhop determines the number of the maximum hoppings. numhop-th nearest neighbor hopping can be included. L detemines the size of the real space lattice.

using Plots
using LinearAlgebra
nkx = 100
kxs = range(-π,stop=π ,length=nkx)
mat_e = zeros(Float64,nkx,32*2)
for i=1:nkx
    kx = kxs[i]
    mat_h = hamiltonian(kx)
    #println(mat_h)
    
    e,v = eigen(Matrix(mat_h))
    #println(e)
    mat_e[i,:] = real.(e[:])
end
plot(kxs,mat_e,labels="")
savefig("tes1.png")

You can see the surface state.

tes2

[22 Jun. 2020] constructing supercell model

We can construct supercell model.

2x2 Graphene

We make the graphene:

using TightBinding
#Primitive vectors
a1 = [sqrt(3)/2,1/2]
a2= [0,1]
#set lattice
la = set_Lattice(2,[a1,a2])
#add atoms
add_atoms!(la,[1/3,1/3])
add_atoms!(la,[2/3,2/3])

#construct hoppings
t = 1.0
add_hoppings!(la,-t,1,2,[1/3,1/3])
add_hoppings!(la,-t,1,2,[-2/3,1/3])
add_hoppings!(la,-t,1,2,[1/3,-2/3])

Then, use make_supercell command:

la_2x2 = make_supercell(la,[2,2])

Then, you can have the supercell model:

using Plots
#show the lattice structure
plot_lattice_2d(la_2x2)

2x2graphne

The density of states is same:

# Density of states
nk = 100 #numer ob meshes. nk^d meshes are used. d is a dimension.
plot_DOS(la_2x2, nk)

2x2dos

[22 Jun. 2020] writing the wannier90 format

You can write the wannier90 file format. Wannier90 is in here It might be useful to have the wannier90_hr format.

    la2 = set_Lattice(2,[[1,0],[0,1]])
    add_atoms!(la2,[0,0])

    show_neighbors(la2)

    t = 1.0
    add_hoppings!(la2,-t,1,1,[1,0])
    add_hoppings!(la2,-t,1,1,[0,1])
    ham2 = hamiltonian_k(la2)

    kmin = [-π,-π]
    kmax = [0.0,0.0]
    nk = 20
    vec_k,energies = calc_band(kmin,kmax,nk,la2,ham2)
    println("Energies on the line from (-π,π) to (0,0)")
    println(energies)

    las = make_supercell(la2,[2,2])
    ham2s = hamiltonian_k(las)

    vec_ks,energiess = calc_band(kmin,kmax,nk,las,ham2s)
    println("Energies on the line from (-π,π) to (0,0)")
    println(energiess)
    
    write_hr(la2,filename="2dsample_hr.dat")
    write_hr(las,filename="2dsample_sp_hr.dat")

write_hr function writes a Lattice type struct as wannier90_hr.dat format

[27 Jun. 2020] reading the wannier90 format

You can read the wannier90_hr format. For example, we write the wannier90 format for 5-band Fe-based superconductor as shown above. Then, we have la as Lattice type. We build a supercell for example.

las = make_supercell(la,[2,2])

Then, write las as the wannier90_hr format.

write_hr(las,filename="pnictide_5band_2x2_hr.dat")

In the wannier90 format, there is no information about lattice vectors and positions of atoms. We have to define these before reading the file. So we make new Lattice type. In our example, the lattice vectors are [2,0] and [0,2]. So, we add

la_new = set_Lattice(2,[[2,0],[0,2]])

and there 20 atoms whose positions are

println(las.positions)
[[0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.5, 0.0], [0.5, 0.0], [0.5, 0.0], [0.5, 0.0], [0.5, 0.0], [0.0, 0.5], [0.0, 0.5], [0.0, 0.5], [0.0, 0.5], [0.0, 0.5], [0.5, 0.5], [0.5, 0.5], [0.5, 0.5], [0.5, 0.5], [0.5, 0.5]]

We add these information to la_new.

atoms = [[0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.5, 0.0], [0.5, 0.0], [0.5, 0.0], [0.5, 0.0], [0.5, 0.0], [0.0, 0.5], [0.0, 0.5], [0.0, 0.5], [0.0, 0.5], [0.0, 0.5], [0.5, 0.5], [0.5, 0.5], [0.5, 0.5], [0.5, 0.5], [0.5, 0.5]]
for i=1:20
    add_atoms!(la_new,atoms[i])
end

And set the chemical potential

set_μ!(la_new,10.96)

If you do not set the chemical potential, the chemical potential is zero.

Then, we read the wannir90 format file.

la_new = read_wannier(la_new,"pnictide_5band_2x2_hr.dat")

After reading it, you can plot Fermi surface etc.

plot_fermisurface_2D(la_new)

Fe_FS_new

About

This can construct the tight-binding model and calculate energies

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 93.5%
  • Julia 6.5%