Skip to content

docker最新版本(1.8.0)加载自定义llm模型不成功 #4050

@316719744

Description

@316719744

System Info / 系統信息

Cuda:Version: 12.4
xllamacpp:0.1.23
vllm 0.8.5,
Python 3.10.14,
操作系统 : Ubuntu 20.04.6 LTS(window的wsl)
镜像版本:xprobe/xinference:latest
Docker version 25.0.3
Docker Compose version v2.24.6-desktop.1

Running Xinference with Docker? / 是否使用 Docker 运行 Xinfernece?

  • docker / docker
  • pip install / 通过 pip install 安装
  • installation from source / 从源码安装

Version info / 版本信息

LLM模型是基于 DeepSeek-R1-Distill-Qwen-7B 训练的模型

{
  "version": 2,
  "context_length": 2048,
  "model_name": "custom-llm",
  "model_lang": [
    "en",
    "zh"
  ],
  "model_ability": [
    "generate"
  ],
  "model_description": "This is a custom model description.",
  "model_family": "qwen2.5",
  "model_specs": [
    {
      "model_format": "ggufv2",
      "model_size_in_billions": 7,
      "quantization": "q4_k_m",
      "multimodal_projectors": null,
      "model_id": null,
      "model_file_name_template": "toone-model-7b-q4_k_m.gguf",
      "model_file_name_split_template": null,
      "quantization_parts": null,
      "model_hub": "huggingface",
      "model_uri": "/opt/xinference/model",
      "model_revision": null,
      "activated_size_in_billions": null
    }
  ],
  "chat_template": null,
  "stop_token_ids": null,
  "stop": null,
  "reasoning_start_tag": null,
  "reasoning_end_tag": null,
  "cache_config": null,
  "virtualenv": {
    "packages": [],
    "inherit_pip_config": true,
    "index_url": null,
    "extra_index_url": null,
    "find_links": null,
    "trusted_host": null,
    "no_build_isolation": null
  }
}

The command used to start Xinference / 用以启动 xinference 的命令

启动参数("Copy as Command Line Command" 操作的值)

xinference launch --model-name custom-llm --model-type LLM --model-engine llama.cpp --model-format ggufv2 --size-in-billions 7 --quantization q4_k_m --n-gpu auto --replica 1 --n-worker 1

Reproduction / 复现过程

启动日日志

2025-09-09 19:52:25,514 xinference.core.worker 144 INFO     [request 2e7e32d2-8df1-11f0-a05d-0242c0a88002] Enter launch_builtin_model, args: <xinference.core.worker.WorkerActor object at 0x7e10ac3024d0>, kwargs: model_uid=custom-llm-0,model_name=custom-llm,model_size_in_billions=7,model_format=ggufv2,quantization=q4_k_m,model_engine=llama.cpp,model_type=LLM,n_gpu=auto,request_limits=None,peft_model_config=None,gpu_idx=None,download_hub=None,model_path=None,xavier_config=None
2025-09-09 19:52:27,086 xinference.model.llm.cache_manager 144 INFO     Cache /opt/xinference/cache/v2/custom-llm-ggufv2-7b-q4_k_m exists
INFO 09-09 19:52:36 [__init__.py:239] Automatically detected platform cuda.
2025-09-09 19:52:44,816 xinference.core.model 2503 INFO     Start requests handler.
2025-09-09 19:52:47,016 xinference.model.llm.llama_cpp.core 2503 INFO     Try to estimate num gpu layers, n_ctx: 2048, n_batch: 2048, n_parallel: 8, gpus:
[{'caps': {'async': True,
           'buffer_from_host_ptr': False,
           'events': True,
           'host_buffer': True},
  'description': 'NVIDIA RTX A6000',
  'memory_free': 49854545920,
  'memory_total': 51526500352,
  'name': 'CUDA0',
  'type': <ggml_backend_dev_type.GGML_BACKEND_DEVICE_TYPE_GPU: 1>}]
2025-09-09 19:53:01,634 xinference.model.llm.llama_cpp.core 2503 INFO     Estimate num gpu layers: MemoryEstimate(layers=29, graph=1275068416, vram_size=6759806976, total_size=6759806976, tensor_split='', gpu_sizes=[6759806976])
build: 5835 (6491d6e4) with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
system info: n_threads = 72, n_threads_batch = 72, total_threads = 72

system_info: n_threads = 72 (n_threads_batch = 72) / 72 | CUDA : ARCHS = 500,610,700,750,800,860,890 | FORCE_MMQ = 1 | USE_GRAPHS = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | BMI2 = 1 | LLAMAFILE = 1 | OPENMP = 1 | REPACK = 1 |

init: loading model
srv    load_model: loading model '/opt/xinference/cache/v2/custom-llm-ggufv2-7b-q4_k_m/toone-model-7b-q4_k_m.gguf'
llama_model_load_from_file_impl: using device CUDA0 (NVIDIA RTX A6000) - 47545 MiB free
llama_model_loader: loaded meta data with 25 key-value pairs and 339 tensors from /opt/xinference/cache/v2/custom-llm-ggufv2-7b-q4_k_m/toone-model-7b-q4_k_m.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = qwen2
llama_model_loader: - kv   1:                               general.type str              = model
llama_model_loader: - kv   2:                               general.name str              = Smart_Highway_Cost_Deepseek7B_Model
llama_model_loader: - kv   3:                         general.size_label str              = 7.6B
llama_model_loader: - kv   4:                          qwen2.block_count u32              = 28
llama_model_loader: - kv   5:                       qwen2.context_length u32              = 131072
llama_model_loader: - kv   6:                     qwen2.embedding_length u32              = 3584
llama_model_loader: - kv   7:                  qwen2.feed_forward_length u32              = 18944
llama_model_loader: - kv   8:                 qwen2.attention.head_count u32              = 28
llama_model_loader: - kv   9:              qwen2.attention.head_count_kv u32              = 4
llama_model_loader: - kv  10:                       qwen2.rope.freq_base f32              = 10000.000000
llama_model_loader: - kv  11:     qwen2.attention.layer_norm_rms_epsilon f32              = 0.000001
llama_model_loader: - kv  12:                       tokenizer.ggml.model str              = gpt2
llama_model_loader: - kv  13:                         tokenizer.ggml.pre str              = deepseek-r1-qwen
llama_model_loader: - kv  14:                      tokenizer.ggml.tokens arr[str,152064]  = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv  15:                  tokenizer.ggml.token_type arr[i32,152064]  = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv  16:                      tokenizer.ggml.merges arr[str,151387]  = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
llama_model_loader: - kv  17:                tokenizer.ggml.bos_token_id u32              = 151646
llama_model_loader: - kv  18:                tokenizer.ggml.eos_token_id u32              = 151643
llama_model_loader: - kv  19:            tokenizer.ggml.padding_token_id u32              = 151643
llama_model_loader: - kv  20:               tokenizer.ggml.add_bos_token bool             = true
llama_model_loader: - kv  21:               tokenizer.ggml.add_eos_token bool             = false
llama_model_loader: - kv  22:                    tokenizer.chat_template str              = {% if not add_generation_prompt is de...
llama_model_loader: - kv  23:               general.quantization_version u32              = 2
llama_model_loader: - kv  24:                          general.file_type u32              = 15
llama_model_loader: - type  f32:  141 tensors
llama_model_loader: - type q4_K:  169 tensors
llama_model_loader: - type q6_K:   29 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type   = Q4_K - Medium
print_info: file size   = 4.36 GiB (4.91 BPW)
load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
load: special tokens cache size = 22
load: token to piece cache size = 0.9310 MB
print_info: arch             = qwen2
print_info: vocab_only       = 0
print_info: n_ctx_train      = 131072
print_info: n_embd           = 3584
print_info: n_layer          = 28
print_info: n_head           = 28
print_info: n_head_kv        = 4
print_info: n_rot            = 128
print_info: n_swa            = 0
print_info: is_swa_any       = 0
print_info: n_embd_head_k    = 128
print_info: n_embd_head_v    = 128
print_info: n_gqa            = 7
print_info: n_embd_k_gqa     = 512
print_info: n_embd_v_gqa     = 512
print_info: f_norm_eps       = 0.0e+00
print_info: f_norm_rms_eps   = 1.0e-06
print_info: f_clamp_kqv      = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale    = 0.0e+00
print_info: f_attn_scale     = 0.0e+00
print_info: n_ff             = 18944
print_info: n_expert         = 0
print_info: n_expert_used    = 0
print_info: causal attn      = 1
print_info: pooling type     = -1
print_info: rope type        = 2
print_info: rope scaling     = linear
print_info: freq_base_train  = 10000.0
print_info: freq_scale_train = 1
print_info: n_ctx_orig_yarn  = 131072
print_info: rope_finetuned   = unknown
print_info: model type       = 7B
print_info: model params     = 7.62 B
print_info: general.name     = Smart_Highway_Cost_Deepseek7B_Model
print_info: vocab type       = BPE
print_info: n_vocab          = 152064
print_info: n_merges         = 151387
print_info: BOS token        = 151646 '<|begin▁of▁sentence|>'
print_info: EOS token        = 151643 '<|end▁of▁sentence|>'
print_info: EOT token        = 151643 '<|end▁of▁sentence|>'
print_info: PAD token        = 151643 '<|end▁of▁sentence|>'
print_info: LF token         = 198 'Ċ'
print_info: FIM PRE token    = 151659 '<|fim_prefix|>'
print_info: FIM SUF token    = 151661 '<|fim_suffix|>'
print_info: FIM MID token    = 151660 '<|fim_middle|>'
print_info: FIM PAD token    = 151662 '<|fim_pad|>'
print_info: FIM REP token    = 151663 '<|repo_name|>'
print_info: FIM SEP token    = 151664 '<|file_sep|>'
print_info: EOG token        = 151643 '<|end▁of▁sentence|>'
print_info: EOG token        = 151662 '<|fim_pad|>'
print_info: EOG token        = 151663 '<|repo_name|>'
print_info: EOG token        = 151664 '<|file_sep|>'
print_info: max token length = 256
load_tensors: loading model tensors, this can take a while... (mmap = false)
load_tensors: offloading 28 repeating layers to GPU
load_tensors: offloading output layer to GPU
load_tensors: offloaded 29/29 layers to GPU
load_tensors:          CPU model buffer size =   292.36 MiB
load_tensors:        CUDA0 model buffer size =  4168.09 MiB
....................................................................................
llama_context: constructing llama_context
llama_context: n_seq_max     = 8
llama_context: n_ctx         = 2048
llama_context: n_ctx_per_seq = 256
llama_context: n_batch       = 2048
llama_context: n_ubatch      = 512
llama_context: causal_attn   = 1
llama_context: flash_attn    = 0
llama_context: freq_base     = 10000.0
llama_context: freq_scale    = 1
llama_context: n_ctx_per_seq (256) < n_ctx_train (131072) -- the full capacity of the model will not be utilized
llama_context:  CUDA_Host  output buffer size =     4.64 MiB
llama_kv_cache_unified:      CUDA0 KV buffer size =   112.00 MiB
llama_kv_cache_unified: size =  112.00 MiB (  2048 cells,  28 layers,  8 seqs), K (f16):   56.00 MiB, V (f16):   56.00 MiB
llama_kv_cache_unified: LLAMA_SET_ROWS=0, using old ggml_cpy() method for backwards compatibility
llama_context:      CUDA0 compute buffer size =   304.00 MiB
llama_context:  CUDA_Host compute buffer size =    11.01 MiB
llama_context: graph nodes  = 1098
llama_context: graph splits = 2
common_init_from_params: setting dry_penalty_last_n to ctx_size = 2048
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
ggml_cuda_compute_forward: RMS_NORM failed
CUDA error: device kernel image is invalid
  current device: 0, in function ggml_cuda_compute_forward at /home/runner/work/xllamacpp/xllamacpp/thirdparty/llama.cpp/ggml/src/ggml-cuda/ggml-cuda.cu:2475
  err
/home/runner/work/xllamacpp/xllamacpp/thirdparty/llama.cpp/ggml/src/ggml-cuda/ggml-cuda.cu:78: CUDA error
/usr/local/lib/python3.10/dist-packages/xllamacpp/xllamacpp.cpython-310-x86_64-linux-gnu.so(+0x12732d8b)[0x719009f06d8b]
/usr/local/lib/python3.10/dist-packages/xllamacpp/xllamacpp.cpython-310-x86_64-linux-gnu.so(ggml_print_backtrace+0x21f)[0x719009f071ef]
/usr/local/lib/python3.10/dist-packages/xllamacpp/xllamacpp.cpython-310-x86_64-linux-gnu.so(ggml_abort+0x152)[0x719009f073c2]
/usr/local/lib/python3.10/dist-packages/xllamacpp/xllamacpp.cpython-310-x86_64-linux-gnu.so(+0x128a3a36)[0x71900a077a36]
/usr/local/lib/python3.10/dist-packages/xllamacpp/xllamacpp.cpython-310-x86_64-linux-gnu.so(+0x128b1ad9)[0x71900a085ad9]
/usr/local/lib/python3.10/dist-packages/xllamacpp/xllamacpp.cpython-310-x86_64-linux-gnu.so(ggml_backend_sched_graph_compute_async+0x41d)[0x719009f1f65d]
/usr/local/lib/python3.10/dist-packages/xllamacpp/xllamacpp.cpython-310-x86_64-linux-gnu.so(_ZN13llama_context13graph_computeEP11ggml_cgraphb+0x99)[0x719009e25ca9]
/usr/local/lib/python3.10/dist-packages/xllamacpp/xllamacpp.cpython-310-x86_64-linux-gnu.so(_ZN13llama_context14process_ubatchERK12llama_ubatch14llm_graph_typeP22llama_memory_context_iR11ggml_status+0x103)[0x719009e25f63]
/usr/local/lib/python3.10/dist-packages/xllamacpp/xllamacpp.cpython-310-x86_64-linux-gnu.so(_ZN13llama_context6decodeERK11llama_batch+0x338)[0x719009e2a768]
/usr/local/lib/python3.10/dist-packages/xllamacpp/xllamacpp.cpython-310-x86_64-linux-gnu.so(llama_decode+0x10)[0x719009e2b940]
/usr/local/lib/python3.10/dist-packages/xllamacpp/xllamacpp.cpython-310-x86_64-linux-gnu.so(_Z23common_init_from_paramsR13common_params+0x6a5)[0x719009dd5745]
/usr/local/lib/python3.10/dist-packages/xllamacpp/xllamacpp.cpython-310-x86_64-linux-gnu.so(_ZN14server_context10load_modelERK13common_params+0xdd3)[0x719009cad153]
/usr/local/lib/python3.10/dist-packages/xllamacpp/xllamacpp.cpython-310-x86_64-linux-gnu.so(+0x124a2828)[0x719009c76828]
/usr/local/lib/python3.10/dist-packages/xllamacpp/xllamacpp.cpython-310-x86_64-linux-gnu.so(_ZNSt6thread11_State_implINS_8_InvokerISt5tupleIJPFvR13common_paramsR14server_contextSt7promiseIiEESt17reference_wrapperIS3_ESB_IS5_ES8_EEEEE6_M_runEv+0x64)[0x719009c96324]
/usr/lib/x86_64-linux-gnu/libstdc++.so.6(+0xdc2c3)[0x7192d14872c3]
/usr/lib/x86_64-linux-gnu/libc.so.6(+0x94b43)[0x7192d224eb43]
/usr/lib/x86_64-linux-gnu/libc.so.6(+0x126a00)[0x7192d22e0a00]
2025-09-09 19:53:16,423 xinference.core.worker 144 ERROR    Failed to load model custom-llm-0
Traceback (most recent call last):
  File "/usr/local/lib/python3.10/dist-packages/xinference/core/worker.py", line 1117, in launch_builtin_model
    await model_ref.load()
  File "/usr/local/lib/python3.10/dist-packages/xoscar/backends/context.py", line 261, in send
    result = await self._wait(future, actor_ref.address, send_message)  # type: ignore
  File "/usr/local/lib/python3.10/dist-packages/xoscar/backends/context.py", line 124, in _wait
    return await future
  File "/usr/local/lib/python3.10/dist-packages/xoscar/backends/core.py", line 104, in _listen
    raise ServerClosed(
xoscar.errors.ServerClosed: Remote server unixsocket:///2415919104 closed: 0 bytes read on a total of 11 expected bytes
2025-09-09 19:53:18,815 xinference.core.worker 144 ERROR    [request 2e7e32d2-8df1-11f0-a05d-0242c0a88002] Leave launch_builtin_model, error: Remote server unixsocket:///2415919104 closed: 0 bytes read on a total of 11 expected bytes, elapsed time: 53 s
Traceback (most recent call last):
  File "/usr/local/lib/python3.10/dist-packages/xinference/core/utils.py", line 93, in wrapped
    ret = await func(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/xinference/core/worker.py", line 1117, in launch_builtin_model
    await model_ref.load()
  File "/usr/local/lib/python3.10/dist-packages/xoscar/backends/context.py", line 261, in send
    result = await self._wait(future, actor_ref.address, send_message)  # type: ignore
  File "/usr/local/lib/python3.10/dist-packages/xoscar/backends/context.py", line 124, in _wait
    return await future
  File "/usr/local/lib/python3.10/dist-packages/xoscar/backends/core.py", line 104, in _listen
    raise ServerClosed(
xoscar.errors.ServerClosed: Remote server unixsocket:///2415919104 closed: 0 bytes read on a total of 11 expected bytes
2025-09-09 19:53:18,825 xinference.api.restful_api 1 ERROR    [address=0.0.0.0:38367, pid=144] Remote server unixsocket:///2415919104 closed: 0 bytes read on a total of 11 expected bytes
Traceback (most recent call last):
  File "/usr/local/lib/python3.10/dist-packages/xinference/api/restful_api.py", line 1077, in launch_model
    model_uid = await (await self._get_supervisor_ref()).launch_builtin_model(
  File "/usr/local/lib/python3.10/dist-packages/xoscar/backends/context.py", line 262, in send
    return self._process_result_message(result)
  File "/usr/local/lib/python3.10/dist-packages/xoscar/backends/context.py", line 111, in _process_result_message
    raise message.as_instanceof_cause()
  File "/usr/local/lib/python3.10/dist-packages/xoscar/backends/pool.py", line 689, in send
    result = await self._run_coro(message.message_id, coro)
  File "/usr/local/lib/python3.10/dist-packages/xoscar/backends/pool.py", line 389, in _run_coro
    return await coro
  File "/usr/local/lib/python3.10/dist-packages/xoscar/api.py", line 418, in __on_receive__
    return await super().__on_receive__(message)  # type: ignore
  File "xoscar/core.pyx", line 564, in __on_receive__
    raise ex
  File "xoscar/core.pyx", line 526, in xoscar.core._BaseActor.__on_receive__
    async with self._lock:
  File "xoscar/core.pyx", line 527, in xoscar.core._BaseActor.__on_receive__
    with debug_async_timeout('actor_lock_timeout',
  File "xoscar/core.pyx", line 532, in xoscar.core._BaseActor.__on_receive__
    result = await result
  File "/usr/local/lib/python3.10/dist-packages/xinference/core/supervisor.py", line 1244, in launch_builtin_model
    await _launch_model()
  File "/usr/local/lib/python3.10/dist-packages/xinference/core/supervisor.py", line 1179, in _launch_model
    subpool_address = await _launch_one_model(
  File "/usr/local/lib/python3.10/dist-packages/xinference/core/supervisor.py", line 1133, in _launch_one_model
    subpool_address = await worker_ref.launch_builtin_model(
  File "/usr/local/lib/python3.10/dist-packages/xoscar/backends/context.py", line 262, in send
    return self._process_result_message(result)
  File "/usr/local/lib/python3.10/dist-packages/xoscar/backends/context.py", line 111, in _process_result_message
    raise message.as_instanceof_cause()
  File "/usr/local/lib/python3.10/dist-packages/xoscar/backends/pool.py", line 689, in send
    result = await self._run_coro(message.message_id, coro)
  File "/usr/local/lib/python3.10/dist-packages/xoscar/backends/pool.py", line 389, in _run_coro
    return await coro
  File "/usr/local/lib/python3.10/dist-packages/xoscar/api.py", line 418, in __on_receive__
    return await super().__on_receive__(message)  # type: ignore
  File "xoscar/core.pyx", line 564, in __on_receive__
    raise ex
  File "xoscar/core.pyx", line 526, in xoscar.core._BaseActor.__on_receive__
    async with self._lock:
  File "xoscar/core.pyx", line 527, in xoscar.core._BaseActor.__on_receive__
    with debug_async_timeout('actor_lock_timeout',
  File "xoscar/core.pyx", line 532, in xoscar.core._BaseActor.__on_receive__
    result = await result
  File "/usr/local/lib/python3.10/dist-packages/xinference/core/utils.py", line 93, in wrapped
    ret = await func(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/xinference/core/worker.py", line 1117, in launch_builtin_model
    await model_ref.load()
  File "/usr/local/lib/python3.10/dist-packages/xoscar/backends/context.py", line 261, in send
    result = await self._wait(future, actor_ref.address, send_message)  # type: ignore
  File "/usr/local/lib/python3.10/dist-packages/xoscar/backends/context.py", line 124, in _wait
    return await future
  File "/usr/local/lib/python3.10/dist-packages/xoscar/backends/core.py", line 104, in _listen
    raise ServerClosed(
xoscar.errors.ServerClosed: [address=0.0.0.0:38367, pid=144] Remote server unixsocket:///2415919104 closed: 0 bytes read on a total of 11 expected bytes

Expected behavior / 期待表现

LLM模型是基于 DeepSeek-R1-Distill-Qwen-7B 训练的模型

升级尝试:
尝试升级了(在docker容器内直接升级) xllamacpp 到 0.2.0 ,部署成功了,但调用模型又提示参数需要2个,但去提交了3个(大概这个意思)
xinference 继续升级到1.9.1 还是不行。

====
替换模型:
升级尝试失败后,就考虑文档说明了 DeepSeek-R1-Distill-Qwen-7B 的部署方式。
就重做新环境,离线下载了 DeepSeek-R1-Distill-Qwen-7B-Q4_K_M.gguf 放在 xxx/unsloth/目录下,加载模型正常。
curl 调用 "deepseek-r1-distill-qwen" 可以正常回复内容。
验证通用模型正常后,再重做新环境,把自定义的模型改名为 DeepSeek-R1-Distill-Qwen-7B-Q4_K_M.gguf,按通用模型的方式操作,一切正常,curl调也正常返回。但是 返回的结果不是训练后的结果,是通用的结果。

说明自定义的模型是失败的。另外通用模型的上下文长度是context_length = 131072,自定义的模型只需要2048就够了,不知道怎么配置?
这个模型在ollama的docker环境是正常,并且上下文长度也配置了2048

不知道xinference怎么部署才能得到预期的效果?

Metadata

Metadata

Assignees

No one assigned

    Labels

    Type

    No type

    Projects

    No projects

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions