Website • Paper • Data(4k downloads)
In your local machine, we recommend to first create a virtual environment:
conda create -n bright python=3.10
conda activate bright
git clone https://github.com/xlang-ai/BRIGHT
cd BRIGHT
pip install -r requirements.txt
That will create the environment bright with all the required packages installed.
BRIGHT comprises 12 diverse datasets, spanning biology, economics, robotics, math, code and more. The queries can be long StackExchange posts, math or code question. The documents can be blogs, news, articles, reports, etc. See Huggingface page for more details.
We evaluate 13 representative retrieval models of diverse sizes and architectures. Run the following command to get results:
python run.py --task {task} --model {model}
--task
: the task/dataset to evaluate. It can take one ofbiology
,earth_science
,economics
,psychology
,robotics
,stackoverflow
,sustainable_living
,leetcode
,pony
,aops
,theoremqa
,--model
: the model to evaluate. Current implementation supportsbm25
,cohere
,e5
,google
,grit
,inst-l
,inst-xl
,openai
,qwen
,sbert
,sf
,voyage
andbge
.
Optional:--long_context
: whether to evaluate on the long-context setting, default toFalse
--query_max_length
: the maximum length for the query--doc_max_length
: the maximum length for the document--encode_batch_size
: the encoding batch size--output_dir
: the directory to output results--cache_dir
: the directory to cache document embeddings--config_dir
: the directory of instruction configurations-checkpoint
: the specific checkpoint to use--key
: key for proprietary models--debug
: whether to turn on the debug mode and load only a few documents
It is very easy to add evaluate custom models on BRIGHT. Just implement the following function in retrievers.py
and add it to the mapping RETRIEVAL_FUNCS
:
def retrieval_model_function_name(queries,query_ids,documents,doc_ids,excluded_ids,**kwargs):
...
return scores
where scores
is in the format:
{
"query_id_1": {
"doc_id_1": score_1,
"doc_id_2": score_2,
...
"doc_id_n": socre_n
},
...
"query_id_m": {
"doc_id_1": score_1,
"doc_id_2": score_2,
...
"doc_id_n": socre_n
}
}
If you have any question related to the code or the paper, feel free to email Hongjin ([email protected]), Howard ([email protected]) or Mengzhou ([email protected]). Please try to specify the problem with details so we can help you better and quicker.
If you find our work helpful, please cite us:
@misc{BRIGHT,
title={BRIGHT: A Realistic and Challenging Benchmark for Reasoning-Intensive Retrieval},
author={Su, Hongjin and Yen, Howard and Xia, Mengzhou and Shi, Weijia and Muennighoff, Niklas and Wang, Han-yu and Liu, Haisu and Shi, Quan and Siegel, Zachary S and Tang, Michael and Sun, Ruoxi and Yoon, Jinsung and Arik, Sercan O and Chen, Danqi and Yu, Tao},
url={https://arxiv.org/abs/2407.12883},
year={2024},
}