Skip to content

Commit

Permalink
fix readme + bump patch version
Browse files Browse the repository at this point in the history
  • Loading branch information
VasudhaJha committed Jul 24, 2023
1 parent 034678c commit dc2a24a
Show file tree
Hide file tree
Showing 2 changed files with 13 additions and 11 deletions.
22 changes: 12 additions & 10 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -174,7 +174,7 @@ import matplotlib.pyplot as plt
import scipy.io as sio
import numpy as np
import pandas as pd
from genomap.genoMOI import genoMOIvis, genoMOItraj
import genomap.genoMOI as gp

# Load five different pancreatic datasets
dx = sio.loadmat('dataBaronX.mat')
Expand All @@ -196,7 +196,7 @@ ybatch = np.squeeze(dx['batchLabel'])

# Apply genomap-based multi omic integration and visualize the integrated data with local structure for cluster analysis
# returns 2D visualization, cluster labels, and intgerated data
resVis,cli,int_data=genoMOIvis(data, data2, data3, data4, data5, colNum=12, rowNum=12, n_dim=32, epoch=10, prealign_method='scanorama')
resVis,cli,int_data=gp.genoMOIvis(data, data2, data3, data4, data5, colNum=12, rowNum=12, n_dim=32, epoch=10, prealign_method='scanorama')


plt.figure(figsize=(15, 10))
Expand All @@ -222,7 +222,7 @@ plt.show()
# Apply genomap-based multi omic integration and visualize the integrated data with global structure for trajectory analysis

# returns 2D embedding, cluster labels, and intgerated data
resTraj,cli,int_data=genoMOItraj(data, data2, data3, data4, data5, colNum=12, rowNum=12, n_dim=32, epoch=10, prealign_method='scanorama')
resTraj,cli,int_data=gp.genoMOItraj(data, data2, data3, data4, data5, colNum=12, rowNum=12, n_dim=32, epoch=10, prealign_method='scanorama')


plt.figure(figsize=(15, 10))
Expand Down Expand Up @@ -250,20 +250,22 @@ plt.show()
import scanpy as sc
import pandas as pd
import genomap.genoAnnotate as gp
import matplotlib.pyplot as plt
#Load the PBMC dataset
adata = sc.read_10x_mtx("pbmc3k_filtered_gene_bc_matrices/")
adata = sc.read_10x_mtx("./pbmc3k_filtered_gene_bc_matrices/")

# Input: adata: annData containing the raw gene counts
# tissue type: e.g. Immune system,Pancreas,Liver,Eye,Kidney,Brain,Lung,Adrenal,Heart,Intestine,Muscle,Placenta,Spleen,Stomach,Thymus

adataP = gp.genoAnnotate(adata,tissue_type="Immune system")

adataP=gp.genoAnnotate(adata,species="human", tissue_type="Immune system")
cell_annotations=adataP.obs['cell_type'].values # numpy array containing the
# cell annotations

# Compute UMAP (requires neighborhood graph, see the previous code for Louvain clustering)
sc.tl.umap(adataP)
# Create a UMAP plot colored by cell type labels
# Compute t-SNE
sc.tl.tsne(adataP)
# Create a t-SNE plot colored by cell type labels
cell_annotations=adataP.obs['cell_type']
sc.pl.umap(adataP, color='cell_type')
sc.pl.tsne(adataP, color='cell_type')
```

### Example 7 - Try genoSig for finding gene signatures for cell/data classes
Expand Down
2 changes: 1 addition & 1 deletion setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@

setup(
name="genomap",
version="1.3.2",
version="1.3.3",
author="Md Tauhidul Islam",
author_email="[email protected]",
description="Genomap converts tabular gene expression data into spatially meaningful images.",
Expand Down

0 comments on commit dc2a24a

Please sign in to comment.