This repo is pytorch implementation of paper "How to Efficiently Adapt Large Segmentation Model(SAM) to Medical Image Domains" by Xinrong Hu et al.
[Paper
]
The code requires python>=3.8
, as well as pytorch>=1.7
and torchvision>=0.8
.
clone the repository locally:
git clone [email protected]:xhu248/AutoSAM.git
and install requirements:
cd AutoSAM; pip install -e .
Download the checkpoints from SAM and place them under AutoSAM/
The original ACDC data files can be dowonloaded at Automated Cardiac Diagnosis Challenge . The data is provided in nii.gz format. We convert them into PNG files as SAM requires RGB input. The processed data can be downloaded here
python scripts/main_feat_seg.py --src_dir ${ACDC_folder} \
--data_dir ${ACDC_folder}/imgs/ --save_dir ./${output_dir} \
--b 4 --dataset ACDC --gpu ${gpu} \
--fold ${fold} --tr_size ${tr_size} --model_type ${model_type} --num_classes 4
${tr_size} decides how many volumes used in the training; ${model_type} is selected from vit_b (default), vit_l, and vit_h;
python scripts/main_autosam_seg.py --src_dir ${ACDC_folder} \
--data_dir ${ACDC_folder}/imgs/ --save_dir ./${output_dir} \
--b 4 --dataset ACDC --gpu ${gpu} \
--fold ${fold} --tr_size ${tr_size} --model_type ${model_type} --num_classes 4
This repo also supports distributed training
python scripts/main_autosam_seg.py --src_dir ${ACDC_folder} --dist-url 'tcp://localhost:10002' \
--data_dir ${ACDC_folder}/imgs/ --save_dir ./${output_dir} \
--multiprocessing-distributed --world-size 1 --rank 0 -b 4 --dataset ACDC \
--fold ${fold} --tr_size ${tr_size} --model_type ${model_type} --num_classes 4
- Evaluate on more datasets
- Add more baselines
If you find our codes useful, please cite
@article{hu2023efficiently,
title={How to Efficiently Adapt Large Segmentation Model (SAM) to Medical Images},
author={Hu, Xinrong and Xu, Xiaowei and Shi, Yiyu},
journal={arXiv preprint arXiv:2306.13731},
year={2023}
}