Etymology: xs (eXtra Small) and numpy (NumPy)
xsNumPy is personal pet-project of mine where I tried and implemented the basic and bare-bones functionality of NumPy just using pure Python. This project is a testament to the richness of NumPy's design. By reimplementing its core features in a self-contained and minimalistic fashion, this project aims to:
- Provide an educational tool for those seeking to understand array mechanics.
- Serve as a lightweight alternative for environments where dependencies must be minimized.
- Encourage developers to explore the intricacies of multidimensional array computation.
This project acknowledges the incredible contributions of the NumPy team and community over decades of development. While this module reimagines NumPy's functionality, it owes its design, inspiration, and motivation to the pioneering work of the NumPy developers. This module is not a replacement for NumPy but an homage to its brilliance and an opportunity to explore its concepts from the ground up.
xsNumPy is a lightweight, pure-Python library inspired by NumPy, designed to mimic essential array operations and features. This project is ideal for learning and experimentation with multidimensional array processing and numerical computing concepts.
Install the latest version of xsNumPy using pip:
pip install -U git+https://github.com/xames3/xsnumpy.git#egg=xsnumpy
As of now, xsNumPy offers the following features:
- xsnumpy.ndarray. The central data structure representing N-dimensional
arrays with support for:
- Arbitrary shapes and data types.
- Broadcasting** for compatible operations (limited).
- Arithmetic and comparison operations.
>>> import xsnumpy as xp
>>>
>>> a = xp.array([[1, 0], [0, 1]])
>>> b = xp.array([[4, 1], [2, 2]])
>>>
>>> a + b
array([[5, 1],
[2, 3]])
>>> a - b
array([[-3, -1],
[-2, -1]])
>>> a * b
array([[4, 0],
[0, 2]])
>>> a / b
array([[0.25, 0. ],
[0. , 0.5]])
>>> a // b
array([[0, 0],
[0, 0]])
>>> a ** b
array([[1, 0],
[0, 1]])
>>> a % b
array([[1, 0],
[0, 1]])
>>> a @ b
array([[4, 1],
[2, 2]])
>>> a < b
array([[True, True],
[True, True]])
>>> a >= b
array([[False, False],
[False, False]])
- xsnumpy.array. Create an N-dimensional array.
>>> xp.array([[1, 2, 3], [4, 5, 6]])
array([[1, 2, 3],
[4, 5, 6]])
>>> xp.array([1, 2, 3.0])
array([1. , 2. , 3. ])
>>> xp.array([1, 2, 3], dtype=xp.bool)
array([True, True, True])
- xsnumpy.empty. Create an uninitialized array of the given shape.
>>> xp.empty([2, 2])
array([[0. , 0. ],
[0. , 0. ]])
>>> xp.empty([2, 2], dtype=xp.int32)
array([[0, 0],
[0, 0]])
- xsnumpy.zeros. Create an array filled with zeros.
>>> xp.zeros((2, 1))
array([[0. ],
[0. ]])
>>> xp.zeros((5,))
array([0. , 0. , 0. , 0. , 0. ])
>>> xp.zeros((5,), dtype=xp.int32)
array([0, 0, 0, 0, 0])
- xsnumpy.ones. Create an array filled with ones.
>>> xp.ones((2, 1))
array([[1. ],
[1. ]])
>>> xp.ones((5,))
array([1. , 1. , 1. , 1. , 1. ])
- xsnumpy.full. Create an array filled with fill_value.
>>> xp.full((2, 2), 10)
array([[10. , 10. ],
[10. , 10. ]])
- xsnumpy.arange. Generate evenly spaced values within a given range.
>>> xp.arange(3)
array([0, 1, 2])
>>> xp.arange(3.0)
array([0. , 1. , 2. ])
>>> xp.arange(3, 7)
array([3, 4, 5, 6])
>>> xp.arange(3, 7, 2)
array([3, 5])
>>> xp.arange(0, 5, 0.5)
array([0. , 0.5, 1. , 1.5, 2. , 2.5, 3. , 3.5, 4. , 4.5])
- xsnumpy.eye. Create a 2D array with ones on the diagonal and zeros elsewhere.
>>> xp.eye(2, dtype=xp.int32)
array([[1, 0],
[0, 1]])
- xsnumpy.identity. Create an identity matrix or 2D array with ones on the main diagonal.
>>> xp.identity(3)
array([[1. , 0. , 0. ],
[0. , 1. , 0. ],
[0. , 0. , 1. ]])
- xsnumpy.tri. Generate a lower triangular matrix filled with ones.
>>> xp.tri(3, 5, 2)
array([[0. , 0. , 1. , 0. , 0. ],
[0. , 0. , 0. , 1. , 0. ],
[0. , 0. , 0. , 0. , 1. ]])
>>> xp.tri(3, 5, -1, dtype=xp.int32)
array([[0, 0, 0, 0, 0],
[1, 0, 0, 0, 0],
[0, 1, 0, 0, 0]])
- xsnumpy.diag. Extract a diagonal or construct a diagonal array.
>>> a = xp.arange(9).reshape((3, 3))
>>> a
array([[0, 1, 2],
[3, 4, 5],
[6, 7, 8]])
>>> xp.diag(a)
array([0, 4, 8])
>>> xp.diag(a, k=1)
array([1, 5])
- ndarray.shape. Tuple of array dimensions.
>>> x = xp.array([1, 2, 3, 4])
>>> x.shape
(4,)
>>> y = xp.zeros((2, 3, 4))
>>> y.shape
(2, 3, 4)
>>> y.shape = (3, 8)
>>> y
array([[0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ],
[0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ],
[0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ]])
- ndarray.strides. Tuple of bytes to step in each dimension when traversing an array.
>>> y = xp.ones((2, 7))
>>> y
array([[1. , 1. , 1. , 1. , 1. , 1. , 1. ],
[1. , 1. , 1. , 1. , 1. , 1. , 1. ]])
>>> y.strides
(28, 4)
- ndarray.ndim. Number of array dimensions.
>>> x = xp.array([1, 2, 3])
>>> x.ndim
1
>>> y = xp.zeros((2, 3, 4))
>>> y.ndim
3
- ndarray.data. Python buffer object pointing to the start of the array's data.
- ndarray.size. Number of elements in the array.
>>> x = xp.zeros((3, 5, 2))
>>> x.size
30
- ndarray.itemsize. Length of one array element in bytes.
>>> x = xp.array([1, 2, 3], dtype=xp.float64)
>>> x.itemsize
8
>>> x = xp.array([1, 2, 3], dtype=xp.int16)
>>> x.itemsize
2
- ndarray.nbytes. Total bytes consumed by the elements of the array.
>>> x = xp.zeros((3, 5, 2), dtype=xp.float32)
>>> x.nbytes
120
- ndarray.base. Base object if memory is from some other object.
>>> x = xp.array([1, 2, 3, 4])
>>> x.base is None
True
>>> y = x[2:]
>>> y.base is x
True
- ndarray.dtype. Data-type of the array's elements.
>>> x = xp.array([1, 2, 3, 4])
>>> x.dtype
dtype('int32')
>>> type(x.dtype)
<class 'xsnumpy.dtype'>
- ndarray.T. View of the transposed array.
>>> a = xp.array([[1, 2], [3, 4]])
>>> a
array([[1, 2],
[3, 4]])
>>> a.T
array([[1, 3],
[2, 4]])
- ndarray.all(). Returns True if all elements evaluate to True.
>>> x = xp.array([[True, False], [True, True]])
>>> x.all()
False
>>> x.all(axis=0)
array([ True, False])
>>> x = xp.array([-1, 4, 5])
>>> x.all()
True
- ndarray.any(). Test whether any array element along a given axis evaluates to True.
>>> x = xp.array([[True, False], [True, True]])
>>> x.any()
True
>>> x = xp.array([[True, False, True ], [False, False, False]])
>>> x.any(axis=0)
array([ True, False, True])
>>> a = xp.array([[1, 0, 0], [0, 0, 1], [0, 0, 0]])
>>> a.any(axis=0)
array([ True, False, True])
- ndarray.astype(). Copies an array to a specified data type.
>>> arr = xp.array([1, 2, 3])
>>> arr.astype(xp.float64)
array([1. , 2. , 3. ], dtype=float64)
- ndarray.fill(). Fill the array with a scalar value.
>>> a = xp.array([1, 2])
>>> a.fill(0)
>>> a
array([0, 0])
- ndarray.flatten(). Return a copy of the array collapsed into one dimension.
>>> a = xp.array([[1, 2], [3, 4]])
>>> a.flatten()
array([1, 2, 3, 4])
- ndarray.item(). Copy an element of an array to a standard Python scalar and return it.
>>> x = xp.array([[2, 2, 6], [1, 3, 6], [1, 0, 1]])
>>> x.item(3)
1
>>> x.item(7)
0
>>> x.item((0, 1))
2
>>> x.item((2, 2))
1
- ndarray.item(). Copy an element of an array to a standard Python scalar and return it.
>>> x = xp.array([[2, 2, 6], [1, 3, 6], [1, 0, 1]])
>>> x.item(3)
1
>>> x.item(7)
0
>>> x.item((0, 1))
2
>>> x.item((2, 2))
1
- ndarray.min(). Return the minimum along a given axis.
>>> x = xp.array([[0, 1], [2, 3]])
>>> x.min()
0
>>> x.min(axis=0)
array([0, 1])
>>> x.min(axis=1)
array([0, 2])
- ndarray.max(). Return the maximum along a given axis.
>>> x = xp.array([[0, 1], [2, 3]])
>>> x.max()
3
>>> x.max(axis=0)
array([2, 3])
>>> x.max(axis=1)
array([1, 3])
- ndarray.sum(). Sum of array elements over a given axis.
>>> a = xp.array([0.5, 1.5])
>>> a.sum()
2.0
>>> a = xp.array([[0, 1], [0, 5]])
>>> a.sum()
6
>>> a.sum(axis=0)
array([0, 6])
>>> a.sum(axis=1)
array([1, 5])
- ndarray.prod(). Return the product of array elements over a given axis.
>>> a = xp.array([1., 2.])
>>> a.prod()
2.0
>>> a = xp.array([[1., 2.], [3., 4.]])
>>> a.prod()
24.0
>>> a.prod(axis=1)
array([2. , 12. ])
>>> a.prod(axis=0)
array([3. , 8. ])
- ndarray.reshape(). Gives a new shape to an array without changing its data.
>>> a = xp.arange(6).reshape((3, 2))
>>> a
array([[0, 1],
[2, 3],
[4, 5]])
>>> a = xp.array([[1, 2, 3], [4, 5, 6]])
>>> a.reshape((6,))
array([1, 2, 3, 4, 5, 6])
- ndarray.transpose(). Returns an array with axes transposed.
>>> a = xp.array([[1, 2], [3, 4]])
>>> a
array([[1, 2],
[3, 4]])
>>> a.transpose()
array([[1, 3],
[2, 4]])
>>> a = xp.array([1, 2, 3, 4])
>>> a.transpose()
array([1, 2, 3, 4])
>>> a = xp.ones((1, 2, 3))
>>> a.transpose((1, 0, 2)).shape
(2, 1, 3)
- xsnumpy.e. Euler's constant.
>>> xp.e
2.718281828459045
- xsnumpy.inf. IEEE 754 floating point representation of (positive) infinity.
>>> xp.inf
inf
- xsnumpy.nan. IEEE 754 floating point representation of Not a Number (NaN).
>>> xp.nan
nan
- xsnumpy.newaxis. A convenient alias for None, useful for indexing arrays.
>>> xp.newaxis is None
True
- xsnumpy.pi. Pi...
>>> xp.pi
3.141592653589793
- xsnumpy.dot. Dot product of two arrays.
>>> xp.dot(3, 4)
12
>>> a = xp.array([[1, 0], [0, 1]])
>>> b = xp.array([[4, 1], [2, 2]])
>>> xp.dot(a, b)
array([[4, 1],
[2, 2]])
- xsnumpy.matmul. Matrix multiplication product of two arrays.
>>> a = xp.array([[1, 0], [0, 1]])
>>> b = xp.array([[4, 1], [2, 2]])
>>> xp.matmul(a, b)
array([[4, 1],
[2, 2]])
- xsnumpy.add. Add arguments element-wise.
>>> xp.add(3, 4)
7
>>> a = xp.array([[1, 0], [0, 1]])
>>> b = xp.array([[4, 1], [2, 2]])
>>> xp.add(a, b)
array([[5. , 1. ],
[2. , 3. ]])
- xsnumpy.subtract. Subtract arguments element-wise.
>>> xp.subtract(3, 4)
-1
>>> a = xp.array([[1, 0], [0, 1]])
>>> b = xp.array([[4, 1], [2, 2]])
>>> xp.subtract(a, b)
array([[-3. , -1. ],
[-2. , -1. ]])
- xsnumpy.multiply. Multiply arguments element-wise.
>>> xp.multiply(3, 4)
12
>>> a = xp.array([[1, 0], [0, 1]])
>>> b = xp.array([[4, 1], [2, 2]])
>>> xp.multiply(a, b)
array([[4. , 0. ],
[0. , 2. ]])
- xsnumpy.divide. Divide arguments element-wise.
>>> xp.divide(4, 4)
1.0
>>> a = xp.array([[1, 0], [0, 1]])
>>> b = xp.array([[4, 1], [2, 2]])
>>> xp.divide(a, b)
array([[0.25, 0. ],
[0. , 0.5]])
- xsnumpy.power. First array elements raised to powers from second array, element-wise.
>>> xp.power(3, 4)
81
>>> a = xp.array([[1, 0], [0, 1]])
>>> b = xp.array([[4, 1], [2, 2]])
>>> xp.power(a, b)
array([[1. , 0. ],
[0. , 1. ]])
- xsnumpy.random.default_rng. Construct a new Generator with the default BitGenerator (PCG64).
>>> rng = xp.random.default_rng(12345)
>>> print(rng)
Generator(PCG64)
>>> rfloat = rng.random()
>>> rfloat
0.41661987254534116
>>> type(rfloat)
<class 'float'>
>>> rints = rng.integers(low=0, high=10, size=3)
>>> rints
array([0, 4, 5])
>>> type(rints[0])
<class 'int'>
>>> arr1 = rng.random((3, 3))
>>> arr1
array([[ 0.9317846894264221, 0.270244836807251, 0.4362284243106842],
[ 0.3730638325214386, 0.8741743564605713, 0.2610900104045868],
[ 0.6272147297859192, 0.6117693185806274, 0.18680904805660248]])
The codebase is structured to be intuitive and mirrors the design principles of NumPy to a significant extent. Comprehensive docstrings are provided for each module and function, ensuring clarity and ease of understanding. Users are encouraged to delve into the code, experiment with it, and modify it to suit their learning curve.
Since, the implementation doesn't rely on any external package, it will work with any CPython build v3.10 and higher. Technically, it should work on 3.9 and below as well but due to some syntactical and type-aliasing changes, it might not support. For instance, the typing module was significantly changed in 3.10, hence some features like types.GenericAlias and using native types like tuple, list, etc. will not work. If you remove all the typing stuff, the code will work just fine, at least that's what I hope.
Note. xsNumPy cannot and should not be used as an alternative to NumPy.
Another important note is the fact, this implementation doesn't fully support
array-broadcasting which is possibly one of the most important facet of NumPy.
Although, the existing features work with arrays when either their shapes
match or one of the array has n.dim
is less than the other array.
Contributions to this project are warmly welcomed. Whether it's refining the code, enhancing the documentation, or extending the current feature set, your input is highly valued. Feedback, whether constructive criticism or commendation, is equally appreciated and will be instrumental in the evolution of this educational tool.
This project is inspired by the remarkable work done by the NumPy Development Team. It is a tribute to their contributions to the field of machine learning and the open-source community at large.
xsNumPy is licensed under the MIT License. See the LICENSE file for more details.