Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
85 changes: 69 additions & 16 deletions sklearn_questions.py
Original file line number Diff line number Diff line change
Expand Up @@ -55,13 +55,12 @@

from sklearn.model_selection import BaseCrossValidator

from sklearn.utils.validation import check_X_y, check_is_fitted
from sklearn.utils.validation import check_array
from sklearn.utils.validation import check_is_fitted
from sklearn.utils.multiclass import check_classification_targets
from sklearn.metrics.pairwise import pairwise_distances


class KNearestNeighbors(BaseEstimator, ClassifierMixin):
class KNearestNeighbors(ClassifierMixin, BaseEstimator):
"""KNearestNeighbors classifier."""

def __init__(self, n_neighbors=1): # noqa: D107
Expand All @@ -82,6 +81,12 @@ def fit(self, X, y):
self : instance of KNearestNeighbors
The current instance of the classifier
"""
X, y = self._validate_data(X, y, accept_sparse=True,
multi_output=False)
check_classification_targets(y)
self._X_train = X
self._y_train = y
self.classes_ = np.unique(y)
return self

def predict(self, X):
Expand All @@ -97,7 +102,16 @@ def predict(self, X):
y : ndarray, shape (n_test_samples,)
Predicted class labels for each test data sample.
"""
y_pred = np.zeros(X.shape[0])
check_is_fitted(self, ['_X_train', '_y_train'])
X = self._validate_data(X, accept_sparse=True, reset=False)
y_pred = np.zeros(X.shape[0], dtype=self._y_train.dtype)
dist = pairwise_distances(X, self._X_train, metric='minkowski')
idx = np.argsort(dist, axis=1)[:, :self.n_neighbors]
labels = self._y_train[idx]
for i, label in enumerate(labels):
unique_labels, counts = np.unique(label, return_counts=True)
y_pred[i] = unique_labels[np.argmax(counts)]

return y_pred

def score(self, X, y):
Expand All @@ -115,7 +129,13 @@ def score(self, X, y):
score : float
Accuracy of the model computed for the (X, y) pairs.
"""
return 0.
check_is_fitted(self, ['_X_train', '_y_train'])
X = self._validate_data(X, accept_sparse=True, reset=False)
y = self._validate_data(y, ensure_2d=False, reset=False)

y_pred = self.predict(X)

return np.mean(y_pred == y)


class MonthlySplit(BaseCrossValidator):
Expand Down Expand Up @@ -155,9 +175,20 @@ def get_n_splits(self, X, y=None, groups=None):
n_splits : int
The number of splits.
"""
return 0

def split(self, X, y, groups=None):
if not isinstance(X, type(pd.DataFrame())):
x_df = pd.DataFrame({'date': X.index, 'val': X.values})
x_df['date'] = pd.to_datetime(x_df['date'])
elif self.time_col == 'index' and 'date' not in X.columns[0]:
x_df = X.reset_index().copy()
x_df = x_df.rename(columns={'index': 'date'}, inplace=False)
else:
x_df = X.copy()
if 'date' not in x_df.columns[0]:
x_df = x_df.rename({self.time_col: 'date'})
month = pd.to_datetime(x_df['date']).dt.strftime('%b-%Y')
return len(set(month)) - 1

def split(self, X, y=None, groups=None):
"""Generate indices to split data into training and test set.

Parameters
Expand All @@ -177,12 +208,34 @@ def split(self, X, y, groups=None):
idx_test : ndarray
The testing set indices for that split.
"""

n_samples = X.shape[0]
n_splits = self.get_n_splits(X, y, groups)
if self.time_col != 'index':
if not isinstance(X[self.time_col].iloc[0],
type(pd.Timestamp('now'))):
raise ValueError('Not datetime')
else:
if not isinstance(X.index[0], type(pd.Timestamp('now'))):
raise ValueError('Not datetime')
if not isinstance(X, type(pd.DataFrame())):
x_df = pd.DataFrame({'date': X.index, 'val': X.values})
x_df['date'] = pd.to_datetime(x_df['date'])
elif self.time_col == 'index':
x_df = X.reset_index().copy()
x_df = x_df.rename(columns={'index': 'date'})
else:
x_df = X.copy()
if 'date' not in x_df.columns[0]:
x_df = x_df.rename(columns={self.time_col: 'date'},
inplace=False)
n_splits = self.get_n_splits(x_df, y, groups)
x_df['month_year'] = pd.to_datetime(x_df['date']).dt.strftime('%b-%Y')

months_years = np.unique(np.sort(pd.to_datetime(x_df['month_year'],
format='%b-%Y')))
x_df['month_year'] = pd.to_datetime(x_df['month_year'], format='%b-%Y')
x_df = x_df.reset_index()
for i in range(n_splits):
idx_train = range(n_samples)
idx_test = range(n_samples)
yield (
idx_train, idx_test
)
idx_train = list(
x_df[x_df['month_year'] == months_years[i]].index)
idx_test = list(
x_df[x_df['month_year'] == months_years[i + 1]].index)
yield (idx_train, idx_test)
Loading