Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
83 changes: 62 additions & 21 deletions pandas_questions.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,16 +8,17 @@
To do that, you will load the data as pandas.DataFrame, merge the info and
aggregate them by regions and finally plot them on a map using `geopandas`.
"""

import pandas as pd
import geopandas as gpd
import matplotlib.pyplot as plt


def load_data():
"""Load data from the CSV files referundum/regions/departments."""
referendum = pd.DataFrame({})
regions = pd.DataFrame({})
departments = pd.DataFrame({})
"""Load data from the CSV files referendum/regions/departments."""
referendum = pd.read_csv('data/referendum.csv', sep=';')
regions = pd.read_csv('data/regions.csv')
departments = pd.read_csv('data/departments.csv')

return referendum, regions, departments

Expand All @@ -28,18 +29,35 @@ def merge_regions_and_departments(regions, departments):
The columns in the final DataFrame should be:
['code_reg', 'name_reg', 'code_dep', 'name_dep']
"""
regions_merge = regions[['code', 'name']]
departments_merge = departments[['region_code', 'code', 'name']]

regions_merge = regions_merge.rename(columns={'code': 'code_reg',
'name': 'name_reg'})
departments_merge = departments_merge.rename(
columns={'region_code': 'code_reg',
'code': 'code_dep', 'name': 'name_dep'})
regions_and_departments = pd.merge(
regions_merge, departments_merge, on='code_reg', how='left')

return pd.DataFrame({})
return regions_and_departments


def merge_referendum_and_areas(referendum, regions_and_departments):
"""Merge referendum and regions_and_departments in one DataFrame.

You can drop the lines relative to DOM-TOM-COM departments, and the
french living abroad.
You can drop the lines relative to DOM-TOM-COM departments,
and the French living abroad.
"""
regions_and_departments["code_dep"] = (
regions_and_departments["code_dep"].str.lstrip('0')
)
referendum = referendum[referendum['Department code'].str[0] != 'Z']
referendum_and_areas = referendum.merge(
regions_and_departments, how='inner', left_on='Department code',
right_on='code_dep')

return pd.DataFrame({})
return referendum_and_areas


def compute_referendum_result_by_regions(referendum_and_areas):
Expand All @@ -48,36 +66,59 @@ def compute_referendum_result_by_regions(referendum_and_areas):
The return DataFrame should be indexed by `code_reg` and have columns:
['name_reg', 'Registered', 'Abstentions', 'Null', 'Choice A', 'Choice B']
"""

return pd.DataFrame({})
count_referendum_regions = referendum_and_areas[['name_reg',
'Registered',
'Abstentions',
'Null', 'Choice A',
'Choice B', 'code_reg']]
return count_referendum_regions.groupby('code_reg').agg({
'Registered': 'sum',
'Abstentions': 'sum',
'Null': 'sum',
'Choice A': 'sum',
'Choice B': 'sum',
'name_reg': 'first'
})


def plot_referendum_map(referendum_result_by_regions):
"""Plot a map with the results from the referendum.

* Load the geographic data with geopandas from `regions.geojson`.
* Merge these info into `referendum_result_by_regions`.
* Use the method `GeoDataFrame.plot` to display the result map. The results
should display the rate of 'Choice A' over all expressed ballots.
* Use the method `GeoDataFrame.plot` to display the result map.
* The results should display the rate of 'Choice A' over all
expressed ballots.
* Return a gpd.GeoDataFrame with a column 'ratio' containing the results.
"""
regions_geo = gpd.read_file('data/regions.geojson')

return gpd.GeoDataFrame({})
referendum_result_by_regions['ratio'] = (
referendum_result_by_regions['Choice A'] /
(referendum_result_by_regions['Choice A'] +
referendum_result_by_regions['Choice B'])
)

regions_ratio = regions_geo.merge(
referendum_result_by_regions, how='inner', left_on='nom',
right_on='name_reg')

regions_ratio.plot(column='ratio')

return regions_ratio

if __name__ == "__main__":

if __name__ == "__main__":
referendum, df_reg, df_dep = load_data()
regions_and_departments = merge_regions_and_departments(
df_reg, df_dep
)

regions_and_departments = merge_regions_and_departments(df_reg, df_dep)
referendum_and_areas = merge_referendum_and_areas(
referendum, regions_and_departments
)
referendum, regions_and_departments)
referendum_results = compute_referendum_result_by_regions(
referendum_and_areas
)
referendum_and_areas)

print(referendum_results)

plot_referendum_map(referendum_results)

plt.show()
Loading