Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
77 changes: 68 additions & 9 deletions pandas_questions.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,17 +8,26 @@
To do that, you will load the data as pandas.DataFrame, merge the info and
aggregate them by regions and finally plot them on a map using `geopandas`.
"""

import pandas as pd
import geopandas as gpd
import matplotlib.pyplot as plt
# import os
# os.chdir(
# (r"C:\Users\Hp\Desktop\IP\M2 DS\Data Camp\Day 1"
# r"\DataCamp2024-assignment-pandas")
# )
# print(os.getcwd())


def load_data():
"""Load data from the CSV files referundum/regions/departments."""
referendum = pd.DataFrame({})
regions = pd.DataFrame({})
departments = pd.DataFrame({})

referendum = pd.read_csv("data/referendum.csv", delimiter=";")
regions = pd.read_csv("data/regions.csv")
departments = pd.read_csv("data/departments.csv")
referendum.columns
regions.columns
departments.columns
return referendum, regions, departments


Expand All @@ -28,8 +37,15 @@ def merge_regions_and_departments(regions, departments):
The columns in the final DataFrame should be:
['code_reg', 'name_reg', 'code_dep', 'name_dep']
"""

return pd.DataFrame({})
regions.reset_index(drop=True, inplace=True)
departments.reset_index(drop=True, inplace=True)
regions['code'].str.zfill(3)
departments['region_code'].str.zfill(3)
reg_dep = regions.merge(departments, left_on="code",
right_on="region_code",
suffixes=("_reg", "_dep"))
reg_dep = reg_dep[["code_reg", "name_reg", "code_dep", "name_dep"]]
return reg_dep


def merge_referendum_and_areas(referendum, regions_and_departments):
Expand All @@ -38,8 +54,19 @@ def merge_referendum_and_areas(referendum, regions_and_departments):
You can drop the lines relative to DOM-TOM-COM departments, and the
french living abroad.
"""
exclude_codes = ["DOM", "COM", "TOM"]
copy_reg_dept = regions_and_departments[~regions_and_departments
["code_reg"].
isin(exclude_codes)].copy()
referendum['Department code'] = referendum['Department code'].astype(str)
referendum['Department code'] = referendum['Department code'].str.zfill(2)
copy_reg_dept["code_dep"] = copy_reg_dept["code_dep"].astype(str)
copy_reg_dept["code_dep"] = copy_reg_dept["code_dep"].str.strip()
referendum_and_areas = referendum.merge(copy_reg_dept,
left_on="Department code",
right_on="code_dep")

return pd.DataFrame({})
return referendum_and_areas


def compute_referendum_result_by_regions(referendum_and_areas):
Expand All @@ -48,8 +75,17 @@ def compute_referendum_result_by_regions(referendum_and_areas):
The return DataFrame should be indexed by `code_reg` and have columns:
['name_reg', 'Registered', 'Abstentions', 'Null', 'Choice A', 'Choice B']
"""
region_counts = referendum_and_areas.groupby(["code_reg", "name_reg"]).agg(
{
"Registered": "sum",
"Abstentions": "sum",
"Null": "sum",
"Choice A": "sum",
"Choice B": "sum"
}).reset_index()
region_counts = region_counts.set_index("code_reg")

return pd.DataFrame({})
return region_counts


def plot_referendum_map(referendum_result_by_regions):
Expand All @@ -61,8 +97,25 @@ def plot_referendum_map(referendum_result_by_regions):
should display the rate of 'Choice A' over all expressed ballots.
* Return a gpd.GeoDataFrame with a column 'ratio' containing the results.
"""
# Load geographic data
geo_data = gpd.read_file("data/regions.geojson")

# Merge geographic data with referendum results
merged = geo_data.merge(
referendum_result_by_regions,
left_on="code",
right_index=True
)

return gpd.GeoDataFrame({})
# Compute the ratio of 'Choice A' to all valid votes
merged["ratio"] = merged["Choice A"] / (merged["Choice A"] +
merged["Choice B"])

# Plot the data
merged.plot(column="ratio", cmap="coolwarm", legend=True)
plt.title("Referendum Results: Choice A Ratio")
plt.axis("off")
return merged


if __name__ == "__main__":
Expand All @@ -81,3 +134,9 @@ def plot_referendum_map(referendum_result_by_regions):

plot_referendum_map(referendum_results)
plt.show()


ref, reg, dept = load_data()
print(ref.head())
print(reg.head())
print(dept.head())
Loading