forked from bryandlee/animegan2-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
92 lines (71 loc) · 2.23 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import os
import argparse
from PIL import Image
import numpy as np
import torch
from torchvision.transforms.functional import to_tensor, to_pil_image
from model import Generator
torch.backends.cudnn.enabled = False
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
def load_image(image_path, x32=False):
img = Image.open(image_path).convert("RGB")
if x32:
def to_32s(x):
return 256 if x < 256 else x - x % 32
w, h = img.size
img = img.resize((to_32s(w), to_32s(h)))
return img
def test(args):
device = args.device
net = Generator()
net.load_state_dict(torch.load(args.checkpoint, map_location="cpu"))
net.to(device).eval()
print(f"model loaded: {args.checkpoint}")
os.makedirs(args.output_dir, exist_ok=True)
for image_name in sorted(os.listdir(args.input_dir)):
if os.path.splitext(image_name)[-1].lower() not in [".jpg", ".png", ".bmp", ".tiff"]:
continue
image = load_image(os.path.join(args.input_dir, image_name), args.x32)
with torch.no_grad():
image = to_tensor(image).unsqueeze(0) * 2 - 1
out = net(image.to(device), args.upsample_align).cpu()
out = out.squeeze(0).clip(-1, 1) * 0.5 + 0.5
out = to_pil_image(out)
out.save(os.path.join(args.output_dir, image_name))
print(f"image saved: {image_name}")
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--checkpoint',
type=str,
default='./weights/paprika.pt',
)
parser.add_argument(
'--input_dir',
type=str,
default='./samples/inputs',
)
parser.add_argument(
'--output_dir',
type=str,
default='./samples/results',
)
parser.add_argument(
'--device',
type=str,
default='cuda:0',
)
parser.add_argument(
'--upsample_align',
type=bool,
default=False,
help="Align corners in decoder upsampling layers"
)
parser.add_argument(
'--x32',
action="store_true",
help="Resize images to multiple of 32"
)
args = parser.parse_args()
test(args)