Skip to content

CheXpert NLP tool to extract observations from radiology reports.

License

Notifications You must be signed in to change notification settings

william-yl-gu/chexpert-labeler

 
 

Repository files navigation

chexpert-labeler

CheXpert NLP tool to extract observations from radiology reports.

Read more about our project here and our AAAI 2019 paper here.

Prerequisites

  1. Clone the NegBio repository:
git clone https://github.com/ncbi-nlp/NegBio.git
  1. Add the NegBio directory to your PYTHONPATH:
export PYTHONPATH={path to negbio directory}:$PYTHONPATH
  1. Make the virtual environment:
conda env create -f environment.yml
  1. Activate the virtual environment:
conda activate chexpert-label
  1. Install NLTK data:
python -m nltk.downloader universal_tagset punkt wordnet
  1. Download the GENIA+PubMed parsing model:
>>> from bllipparser import RerankingParser
>>> RerankingParser.fetch_and_load('GENIA+PubMed')

Usage

Place reports in a headerless, single column csv {reports_path}. Each report must be contained in quotes if (1) it contains a comma or (2) it spans multiple lines. See sample_reports.csv (with output labeled_reports.csv)for an example.

python label.py --reports_path {reports_path}

Run python label.py --help for descriptions of all of the command-line arguments.

Contributions

This repository builds upon the work of NegBio.

This tool was developed by Jeremy Irvin, Pranav Rajpurkar, Michael Ko, Yifan Yu, and Silviana Ciurea-Ilcus.

Citing

If you're using the CheXpert labeling tool, please cite this paper:

@inproceedings{irvin2019chexpert,
  title={CheXpert: A large chest radiograph dataset with uncertainty labels and expert comparison},
  author={Irvin, Jeremy and Rajpurkar, Pranav and Ko, Michael and Yu, Yifan and Ciurea-Ilcus, Silviana and Chute, Chris and Marklund, Henrik and Haghgoo, Behzad and Ball, Robyn and Shpanskaya, Katie and others},
  booktitle={Thirty-Third AAAI Conference on Artificial Intelligence},
  year={2019}
}

About

CheXpert NLP tool to extract observations from radiology reports.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%