Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat(whisper): Support whisper-style decoding #2196

Merged
merged 1 commit into from
Dec 6, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 4 additions & 2 deletions wenet/transformer/asr_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -44,14 +44,16 @@ def __init__(
reverse_weight: float = 0.0,
lsm_weight: float = 0.0,
length_normalized_loss: bool = False,
special_tokens: dict = None,
):
assert 0.0 <= ctc_weight <= 1.0, ctc_weight

super().__init__()
# note that eos is the same as sos (equivalent ID)
self.sos = vocab_size - 1
self.eos = vocab_size - 1
self.sos = special_tokens.get("sos", vocab_size - 1)
self.eos = special_tokens.get("eos", vocab_size - 1)
self.vocab_size = vocab_size
self.special_tokens = special_tokens
self.ignore_id = ignore_id
self.ctc_weight = ctc_weight
self.reverse_weight = reverse_weight
Expand Down
45 changes: 34 additions & 11 deletions wenet/transformer/search.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,8 @@
import torch
from torch.nn.utils.rnn import pad_sequence

from wenet.utils.common import (add_sos_eos, log_add)
from wenet.utils.common import (add_sos_eos, log_add, WHISPER_LANGS,
add_whisper_tokens)
from wenet.utils.ctc_utils import remove_duplicates_and_blank
from wenet.utils.mask import (make_pad_mask, mask_finished_preds,
mask_finished_scores, subsequent_mask)
Expand Down Expand Up @@ -259,16 +260,26 @@ def attention_beam_search(
encoder_mask = encoder_mask.unsqueeze(1).repeat(1, beam_size, 1, 1).view(
running_size, 1, maxlen) # (B*N, 1, max_len)

hyps = torch.ones([running_size, 1], dtype=torch.long,
device=device).fill_(model.sos) # (B*N, 1)
if model.special_tokens is not None and "transcribe" in model.special_tokens:
hyps = torch.ones([running_size, 4], dtype=torch.long,
device=device) # (B*N, 4)
# TODO(xcsong): add args for language, task, etc
hyps[:, 0] = model.special_tokens["sot"]
hyps[:, 1] = model.special_tokens["sot"] + 1 + WHISPER_LANGS.index("zh")
hyps[:, 2] = model.special_tokens["transcribe"]
hyps[:, 3] = model.special_tokens["no_timestamps"]
else:
hyps = torch.ones([running_size, 1], dtype=torch.long,
device=device).fill_(model.sos) # (B*N, 1)
prefix_len = hyps.size(1)
scores = torch.tensor([0.0] + [-float('inf')] * (beam_size - 1),
dtype=torch.float)
scores = scores.to(device).repeat([batch_size
]).unsqueeze(1).to(device) # (B*N, 1)
end_flag = torch.zeros_like(scores, dtype=torch.bool, device=device)
cache: Optional[List[torch.Tensor]] = None
# 2. Decoder forward step by step
for i in range(1, maxlen + 1):
for i in range(prefix_len, maxlen + 1):
# Stop if all batch and all beam produce eos
if end_flag.sum() == running_size:
break
Expand Down Expand Up @@ -323,7 +334,7 @@ def attention_beam_search(
best_hyps_index = best_index + torch.arange(
batch_size, dtype=torch.long, device=device) * beam_size
best_hyps = torch.index_select(hyps, dim=0, index=best_hyps_index)
best_hyps = best_hyps[:, 1:]
best_hyps = best_hyps[:, prefix_len:]

results = []
for i in range(batch_size):
Expand Down Expand Up @@ -360,8 +371,20 @@ def attention_rescoring(
hyps_lens = torch.tensor([len(hyp) for hyp in hyps],
device=device,
dtype=torch.long) # (beam_size,)
hyps_pad, _ = add_sos_eos(hyps_pad, sos, eos, model.ignore_id)
hyps_lens = hyps_lens + 1 # Add <sos> at begining
if model.special_tokens is not None and "transcribe" in model.special_tokens:
# TODO(xcsong): add args for language, task, etc
prev_len = hyps_pad.size(1)
hyps_pad, _ = add_whisper_tokens(
model.special_tokens, hyps_pad, model.ignore_id, task="transcribe",
no_timestamp=True, language="zh", use_prev=False
)
cur_len = hyps_pad.size(1)
hyps_lens = hyps_lens + cur_len - prev_len
prefix_len = 4
else:
hyps_pad, _ = add_sos_eos(hyps_pad, sos, eos, model.ignore_id)
hyps_lens = hyps_lens + 1 # Add <sos> at begining
prefix_len = 1
decoder_out, r_decoder_out = model.forward_attention_decoder(
hyps_pad, hyps_lens, encoder_out, reverse_weight)
# Only use decoder score for rescoring
Expand All @@ -373,18 +396,18 @@ def attention_rescoring(
score = 0.0
tc = [] # tokens confidences
for j, w in enumerate(hyp):
s = decoder_out[i][j][w]
s = decoder_out[i][j + (prefix_len - 1)][w]
score += s
tc.append(math.exp(s))
score += decoder_out[i][len(hyp)][eos]
score += decoder_out[i][len(hyp) + (prefix_len - 1)][eos]
# add right to left decoder score
if reverse_weight > 0 and r_decoder_out.dim() > 0:
r_score = 0.0
for j, w in enumerate(hyp):
s = r_decoder_out[i][len(hyp) - j - 1][w]
s = r_decoder_out[i][len(hyp) - j - 1 + (prefix_len - 1)][w]
r_score += s
tc[j] = (tc[j] + math.exp(s)) / 2
r_score += r_decoder_out[i][len(hyp)][eos]
r_score += r_decoder_out[i][len(hyp) + (prefix_len - 1)][eos]
score = score * (1 - reverse_weight) + r_score * reverse_weight
confidences.append(math.exp(score / (len(hyp) + 1)))
# add ctc score
Expand Down
4 changes: 2 additions & 2 deletions wenet/whisper/whisper.py
Original file line number Diff line number Diff line change
Expand Up @@ -40,11 +40,11 @@ def __init__(
special_tokens: dict = None,
):
super().__init__(vocab_size, encoder, decoder, ctc, ctc_weight, ignore_id,
reverse_weight, lsm_weight, length_normalized_loss)
reverse_weight, lsm_weight, length_normalized_loss,
special_tokens)
assert reverse_weight == 0.0
self.sos = special_tokens["sot"]
self.eos = special_tokens["eot"]
self.special_tokens = special_tokens

# TODO(xcsong): time align
def set_alignment_heads(self, dump: bytes):
Expand Down
Loading