Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[text] refine tokenizer #2165

Merged
merged 20 commits into from
Nov 28, 2023
Merged
Show file tree
Hide file tree
Changes from 9 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
126 changes: 0 additions & 126 deletions test/test_tokenize.py

This file was deleted.

150 changes: 150 additions & 0 deletions test/wenet/dataset/test_processor.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,150 @@
import pytest

import wenet.dataset.processor as processor
from wenet.text.wenet_tokenizer import WenetTokenizer


@pytest.mark.parametrize("symbol_table_path", [
"test/resources/librispeech.words.txt", "test/resources/aishell2.words.txt"
])
def test_tokenize(symbol_table_path):
txts = [{
"txt": "震东好帅"
}, {
"txt": " 吴迪也好帅 "
}, {
"txt": "binbin is also handsome"
}, {
"txt": " life is short i use wenet "
}, {
"txt": "超哥 is the most handsome 吧"
}, {
"txt": " 人生苦短i use wenet "
}, {
"txt": "人生苦短I USE WENET"
}, {
"txt": "zhendong ist so schön"
}, {
"txt": " zhendong ist so schön "
}, {
"txt": "It's okay"
}]
if symbol_table_path == "test/resources/librispeech.words.txt":
bpe_model = "test/resources/librispeech.train_960_unigram5000.bpemodel"
refs = [{
"tokens": ['震', '东', '好', '帅'],
"label": [1, 1, 1, 1]
}, {
"tokens": ['吴', '迪', '也', '好', '帅'],
"label": [1, 1, 1, 1, 1]
}, {
"tokens": ['▁B', 'IN', 'B', 'IN', '▁IS', '▁ALSO', "▁HANDSOME"],
"label": [347, 2216, 346, 2216, 2332, 143, 1990]
}, {
"tokens":
['▁LIFE', '▁IS', '▁SHORT', '▁I', '▁USE', '▁WE', 'NE', 'T'],
"label": [2568, 2332, 3968, 2152, 4699, 4833, 2926, 4366]
}, {
"tokens": ['超', '哥', '▁IS', '▁THE', '▁MOST', '▁HANDSOME', '吧'],
"label": [1, 1, 2332, 4435, 2860, 1990, 1]
}, {
"tokens": ['人', '生', '苦', '短', '▁I', '▁USE', '▁WE', 'NE', 'T'],
"label": [1, 1, 1, 1, 2152, 4699, 4833, 2926, 4366]
}, {
"tokens": ['人', '生', '苦', '短', '▁I', '▁USE', '▁WE', 'NE', 'T'],
"label": [1, 1, 1, 1, 2152, 4699, 4833, 2926, 4366]
}, {
"tokens":
['▁', 'Z', 'HEN', 'DO', 'NG', '▁IS', 'T', '▁SO', '▁SCH', 'Ö', 'N'],
"label":
[3, 4999, 2048, 1248, 2960, 2332, 4366, 4072, 3844, 1, 2901]
}, {
"tokens":
['▁', 'Z', 'HEN', 'DO', 'NG', '▁IS', 'T', '▁SO', '▁SCH', 'Ö', 'N'],
"label":
[3, 4999, 2048, 1248, 2960, 2332, 4366, 4072, 3844, 1, 2901]
}, {
"tokens": ['▁IT', "'", 'S', '▁O', 'KA', 'Y'],
"label": [2344, 2, 3790, 3010, 2418, 4979]
}]
else:
bpe_model = None
refs = [{
"tokens": ['震', '东', '好', '帅'],
"label": [4932, 80, 1059, 1375]
}, {
"tokens": ['吴', '迪', '也', '好', '帅'],
"label": [656, 4540, 117, 1059, 1375]
}, {
"tokens": [
'b', 'i', 'n', 'b', 'i', 'n', '▁', 'i', 's', '▁', 'a', 'l',
's', 'o', '▁', 'h', 'a', 'n', 'd', 's', 'o', 'm', 'e'
],
"label": [
9, 23, 33, 9, 23, 33, 1, 23, 43, 1, 7, 29, 43, 35, 1, 21, 7,
33, 13, 43, 35, 31, 15
]
}, {
"tokens": [
'l', 'i', 'f', 'e', '▁', 'i', 's', '▁', 's', 'h', 'o', 'r',
't', '▁', 'i', '▁', 'u', 's', 'e', '▁', 'w', 'e', 'n', 'e', 't'
],
"label": [
29, 23, 17, 15, 1, 23, 43, 1, 43, 21, 35, 41, 46, 1, 23, 1, 48,
43, 15, 1, 52, 15, 33, 15, 46
]
}, {
"tokens": [
'超', '哥', '▁', 'i', 's', '▁', 't', 'h', 'e', '▁', 'm', 'o',
's', 't', '▁', 'h', 'a', 'n', 'd', 's', 'o', 'm', 'e', '▁', '吧'
],
"label": [
4395, 736, 1, 23, 43, 1, 46, 21, 15, 1, 31, 35, 43, 46, 1, 21,
7, 33, 13, 43, 35, 31, 15, 1, 647
]
}, {
"tokens": [
'人', '生', '苦', '短', 'i', '▁', 'u', 's', 'e', '▁', 'w', 'e',
'n', 'e', 't'
],
"label":
[155, 2980, 3833, 3178, 23, 1, 48, 43, 15, 1, 52, 15, 33, 15, 46]
}, {
"tokens": [
'人', '生', '苦', '短', 'I', '▁', 'U', 'S', 'E', '▁', 'W', 'E',
'N', 'E', 'T'
],
"label":
[155, 2980, 3833, 3178, 24, 1, 49, 44, 16, 1, 53, 16, 34, 16, 47]
}, {
"tokens": [
'z', 'h', 'e', 'n', 'd', 'o', 'n', 'g', '▁', 'i', 's', 't',
'▁', 's', 'o', '▁', 's', 'c', 'h', 'ö', 'n'
],
"label": [
58, 21, 15, 33, 13, 35, 33, 19, 1, 23, 43, 46, 1, 43, 35, 1,
43, 11, 21, 1, 33
]
}, {
"tokens": [
'z', 'h', 'e', 'n', 'd', 'o', 'n', 'g', '▁', 'i', 's', 't',
'▁', 's', 'o', '▁', 's', 'c', 'h', 'ö', 'n'
],
"label": [
58, 21, 15, 33, 13, 35, 33, 19, 1, 23, 43, 46, 1, 43, 35, 1,
43, 11, 21, 1, 33
]
}, {
"tokens": ['I', 't', "'", 's', '▁', 'o', 'k', 'a', 'y'],
"label": [24, 46, 2, 43, 1, 35, 27, 7, 56]
}]

tokenizer = WenetTokenizer(symbol_table_path,
bpe_model,
split_with_space=False)
outs = processor.tokenize(txts, tokenizer)
for (hyp, ref) in zip(outs, refs):
assert (len(hyp["tokens"]) == len(ref["tokens"]))
assert (all(h == r for h, r in zip(hyp["tokens"], ref["tokens"])))
assert (len(hyp["label"]) == len(ref["label"]))
assert (all(h == r for h, r in zip(hyp["label"], ref["label"])))
88 changes: 88 additions & 0 deletions test/wenet/text/test_bpe_tokenizer.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,88 @@
import pytest
from wenet.text.bpe_tokenizer import BpeTokenizer


@pytest.fixture(params=[[
"test/resources/librispeech.words.txt",
"test/resources/librispeech.train_960_unigram5000.bpemodel"
]])
def bpe_tokenizer(request):
symbol_table, bpe_model = request.param
return BpeTokenizer(bpe_model, symbol_table)


def test_tokenize(bpe_tokenizer):
tokenizer = bpe_tokenizer
txts = [
"震东好帅",
" 吴迪也好帅 ",
"binbin is also handsome",
" life is short i use wenet ",
"超哥 is the most handsome 吧",
" 人生苦短i use wenet ",
"人生苦短I USE WENET",
"zhendong ist so schön",
" zhendong ist so schön ",
"It's okay",
]
refs = [{
"tokens": ['震', '东', '好', '帅'],
"label": [1, 1, 1, 1]
}, {
"tokens": ['吴', '迪', '也', '好', '帅'],
"label": [1, 1, 1, 1, 1]
}, {
"tokens": ['▁B', 'IN', 'B', 'IN', '▁IS', '▁ALSO', "▁HANDSOME"],
"label": [347, 2216, 346, 2216, 2332, 143, 1990]
}, {
"tokens": ['▁LIFE', '▁IS', '▁SHORT', '▁I', '▁USE', '▁WE', 'NE', 'T'],
"label": [2568, 2332, 3968, 2152, 4699, 4833, 2926, 4366]
}, {
"tokens": ['超', '哥', '▁IS', '▁THE', '▁MOST', '▁HANDSOME', '吧'],
"label": [1, 1, 2332, 4435, 2860, 1990, 1]
}, {
"tokens": ['人', '生', '苦', '短', '▁I', '▁USE', '▁WE', 'NE', 'T'],
"label": [1, 1, 1, 1, 2152, 4699, 4833, 2926, 4366]
}, {
"tokens": ['人', '生', '苦', '短', '▁I', '▁USE', '▁WE', 'NE', 'T'],
"label": [1, 1, 1, 1, 2152, 4699, 4833, 2926, 4366]
}, {
"tokens":
['▁', 'Z', 'HEN', 'DO', 'NG', '▁IS', 'T', '▁SO', '▁SCH', 'Ö', 'N'],
"label": [3, 4999, 2048, 1248, 2960, 2332, 4366, 4072, 3844, 1, 2901]
}, {
"tokens":
['▁', 'Z', 'HEN', 'DO', 'NG', '▁IS', 'T', '▁SO', '▁SCH', 'Ö', 'N'],
"label": [3, 4999, 2048, 1248, 2960, 2332, 4366, 4072, 3844, 1, 2901]
}, {
"tokens": ['▁IT', "'", 'S', '▁O', 'KA', 'Y'],
"label": [2344, 2, 3790, 3010, 2418, 4979]
}]

results = []
for line in txts:
tokens, label = tokenizer.tokenize(line)
results.append({"tokens": tokens, "label": label})

for (hyp, ref) in zip(results, refs):
assert (len(hyp["tokens"]) == len(ref["tokens"]))
assert (all(h == r for h, r in zip(hyp["tokens"], ref["tokens"])))
assert (len(hyp["label"]) == len(ref["label"]))
assert (all(h == r for h, r in zip(hyp["label"], ref["label"])))


def test_detokenize(bpe_tokenizer):
tokenizer = bpe_tokenizer
# TODO(Mddct): more unit test
ids = [2344, 2, 3790, 3010, 2418, 4979]
expected = {
'txt': "IT'S OKAY",
"tokens": ['▁IT', "'", 'S', '▁O', 'KA', 'Y']
}
txt, tokens = tokenizer.detokenize(ids)
assert txt == expected['txt']
assert (all(h == r for h, r in zip(tokens, expected['tokens'])))


def test_vocab_size(bpe_tokenizer):
assert bpe_tokenizer.vocab_size() == 5002
Loading
Loading