Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Voyage AI embeddings #1

Merged
merged 3 commits into from
May 21, 2024
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion CHANGELOG.md
Original file line number Diff line number Diff line change
@@ -1,10 +1,11 @@
## 0.13.8-dev12
## 0.13.8-dev13

### Enhancements

* **Skip unnecessary element sorting in `partition_pdf()`**. Skip element sorting when determining whether embedded text can be extracted.
* **Faster evaluation** Support for concurrent processing of documents during evaluation
* **Add strategy parameter to `partition_docx()`.** Behavior of future enhancements may be sensitive the partitioning strategy. Add this parameter so `partition_docx()` is aware of the requested strategy.
* **Add VoyageAI embedder** Adds VoyageAI embeddings to support embedding via Voyage AI.

### Features

Expand Down
53 changes: 52 additions & 1 deletion docs/source/core/embedding.rst
Original file line number Diff line number Diff line change
Expand Up @@ -226,4 +226,55 @@ workload identity, etc…)

[print(e.embeddings, e) for e in elements]
print(query_embedding, query)
print(embedding_encoder.is_unit_vector(), embedding_encoder.num_of_dimensions())
print(embedding_encoder.is_unit_vector(), embedding_encoder.num_of_dimensions())

``VoyageAIEmbeddingEncoder``
--------------------------

The ``VoyageAIEmbeddingEncoder`` class connects to the VoyageAI to obtain embeddings for pieces of text.

``embed_documents`` will receive a list of Elements, and return an updated list which
includes the ``embeddings`` attribute for each Element.

``embed_query`` will receive a query as a string, and return a list of floats which is the
embedding vector for the given query string.

``num_of_dimensions`` is a metadata property that denotes the number of dimensions in any
embedding vector obtained via this class.

``is_unit_vector`` is a metadata property that denotes if embedding vectors obtained via
this class are unit vectors.

The following code block shows an example of how to use ``VoyageAIEmbeddingEncoder``. You will
see the updated elements list (with the ``embeddings`` attribute included for each element),
the embedding vector for the query string, and some metadata properties about the embedding model.

To use Voyage AI tou will need to pass Voyage AI API Key (obtained from https://dash.voyageai.com/)
fzowl marked this conversation as resolved.
Show resolved Hide resolved
as the ``api_key`` parameter.

The ``model_name`` parameter is mandatory, please check the available models
at https://docs.voyageai.com/docs/embeddings

.. code:: python

import os

from unstructured.documents.elements import Text
from unstructured.embed.voyageai import VoyageAIEmbeddingConfig, VoyageAIEmbeddingEncoder

embedding_encoder = VoyageAIEmbeddingEncoder(
config=VoyageAIEmbeddingConfig(
api_key=os.environ["VOYAGE_API_KEY"],
model_name="voyage-law-2"
)
)
elements = embedding_encoder.embed_documents(
elements=[Text("This is sentence 1"), Text("This is sentence 2")],
)

query = "This is the query"
query_embedding = embedding_encoder.embed_query(query=query)

[print(e, e.embeddings) for e in elements]
print(query, query_embedding)
print(embedding_encoder.is_unit_vector, embedding_encoder.num_of_dimensions)
27 changes: 27 additions & 0 deletions examples/embed/example_voyageai.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,27 @@
import os

from unstructured.documents.elements import Text
from unstructured.embed.voyageai import VoyageAIEmbeddingConfig, VoyageAIEmbeddingEncoder

# To use Voyage AI tou will need to pass Voyage AI API Key (obtained from https://dash.voyageai.com/)
fzowl marked this conversation as resolved.
Show resolved Hide resolved
# as the ``api_key`` parameter.
#
# The ``model_name`` parameter is mandatory, please check the available models
# at https://docs.voyageai.com/docs/embeddings

embedding_encoder = VoyageAIEmbeddingEncoder(
config=VoyageAIEmbeddingConfig(
api_key=os.environ["VOYAGE_API_KEY"],
model_name="voyage-law-2"
)
)
elements = embedding_encoder.embed_documents(
elements=[Text("This is sentence 1"), Text("This is sentence 2")],
)

query = "This is the query"
query_embedding = embedding_encoder.embed_query(query=query)

[print(e, e.embeddings) for e in elements]
print(query, query_embedding)
print(embedding_encoder.is_unit_vector, embedding_encoder.num_of_dimensions)
4 changes: 4 additions & 0 deletions requirements/ingest/embed-voyageai.in
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
-c ../deps/constraints.txt
-c ../base.txt
langchain
langchain-voyageai
140 changes: 140 additions & 0 deletions requirements/ingest/embed-voyageai.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,140 @@
#
# This file is autogenerated by pip-compile with Python 3.11
# by the following command:
#
# pip-compile ./ingest/embed-voyageai.in
#
aiohttp==3.9.5
# via
# langchain
# langchain-community
# voyageai
aiolimiter==1.1.0
# via voyageai
aiosignal==1.3.1
# via aiohttp
annotated-types==0.6.0
# via pydantic
attrs==23.2.0
# via aiohttp
certifi==2024.2.2
# via
# -c ./ingest/../base.txt
# -c ./ingest/../deps/constraints.txt
# requests
charset-normalizer==3.3.2
# via
# -c ./ingest/../base.txt
# requests
dataclasses-json==0.6.6
# via
# -c ./ingest/../base.txt
# langchain
# langchain-community
frozenlist==1.4.1
# via
# aiohttp
# aiosignal
idna==3.7
# via
# -c ./ingest/../base.txt
# requests
# yarl
jsonpatch==1.33
# via langchain-core
jsonpointer==2.4
# via jsonpatch
langchain==0.1.20
# via -r ./ingest/embed-voyageai.in
langchain-community==0.0.38
# via langchain
langchain-core==0.1.52
# via
# langchain
# langchain-community
# langchain-text-splitters
# langchain-voyageai
langchain-text-splitters==0.0.1
# via langchain
langchain-voyageai==0.1.1
# via -r ./ingest/embed-voyageai.in
langsmith==0.1.57
# via
# langchain
# langchain-community
# langchain-core
marshmallow==3.21.2
# via
# -c ./ingest/../base.txt
# dataclasses-json
multidict==6.0.5
# via
# aiohttp
# yarl
mypy-extensions==1.0.0
# via
# -c ./ingest/../base.txt
# typing-inspect
numpy==1.26.4
# via
# -c ./ingest/../base.txt
# langchain
# langchain-community
# voyageai
orjson==3.10.3
# via langsmith
packaging==23.2
# via
# -c ./ingest/../base.txt
# -c ./ingest/../deps/constraints.txt
# langchain-core
# marshmallow
pydantic==2.7.1
# via
# langchain
# langchain-core
# langsmith
pydantic-core==2.18.2
# via pydantic
pyyaml==6.0.1
# via
# langchain
# langchain-community
# langchain-core
requests==2.31.0
# via
# -c ./ingest/../base.txt
# langchain
# langchain-community
# langsmith
# voyageai
sqlalchemy==2.0.30
# via
# langchain
# langchain-community
tenacity==8.3.0
# via
# langchain
# langchain-community
# langchain-core
# voyageai
typing-extensions==4.11.0
# via
# -c ./ingest/../base.txt
# pydantic
# pydantic-core
# sqlalchemy
# typing-inspect
typing-inspect==0.9.0
# via
# -c ./ingest/../base.txt
# dataclasses-json
urllib3==1.26.18
# via
# -c ./ingest/../base.txt
# -c ./ingest/../deps/constraints.txt
# requests
voyageai==0.2.2
# via langchain-voyageai
yarl==1.9.4
# via aiohttp
1 change: 1 addition & 0 deletions setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -171,6 +171,7 @@ def load_requirements(file_list: Optional[Union[str, List[str]]] = None) -> List
"embed-huggingface": load_requirements("requirements/ingest/embed-huggingface.in"),
"embed-octoai": load_requirements("requirements/ingest/embed-octoai.in"),
"embed-vertexai": load_requirements("requirements/ingest/embed-vertexai.in"),
"embed-voyageai": load_requirements("requirements/ingest/embed-voyageai.in"),
"openai": load_requirements("requirements/ingest/embed-openai.in"),
"bedrock": load_requirements("requirements/ingest/embed-aws-bedrock.in"),
"databricks-volumes": load_requirements("requirements/ingest/databricks-volumes.in"),
Expand Down
19 changes: 19 additions & 0 deletions test_unstructured/embed/test_voyageai.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,19 @@
from unstructured.documents.elements import Text
from unstructured.embed.voyageai import VoyageAIEmbeddingConfig, VoyageAIEmbeddingEncoder


def test_embed_documents_does_not_break_element_to_dict(mocker):
# Mocked client with the desired behavior for embed_documents
mock_client = mocker.MagicMock()
mock_client.embed_documents.return_value = [1, 2]

# Mock create_client to return our mock_client
mocker.patch.object(VoyageAIEmbeddingEncoder, "create_client", return_value=mock_client)

encoder = VoyageAIEmbeddingEncoder(config=VoyageAIEmbeddingConfig(api_key="api_key", model_name="voyage-law-2"))
elements = encoder.embed_documents(
elements=[Text("This is sentence 1"), Text("This is sentence 2")],
)
assert len(elements) == 2
assert elements[0].to_dict()["text"] == "This is sentence 1"
assert elements[1].to_dict()["text"] == "This is sentence 2"
Loading