Skip to content

[Usage]: beam_search not work with multimodal input #9577

@hung1012

Description

@hung1012
The output of `python collect_env.py`
Collecting environment information...
PyTorch version: 2.4.0+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A

OS: Ubuntu 20.04.6 LTS (x86_64)
GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0
Clang version: Could not collect
CMake version: version 3.30.2
Libc version: glibc-2.31

Python version: 3.12.3 | packaged by Anaconda, Inc. | (main, May  6 2024, 19:46:43) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.15.0-71-generic-x86_64-with-glibc2.31
Is CUDA available: True
CUDA runtime version: 12.4.131
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: 
GPU 0: NVIDIA GeForce RTX 3090
GPU 1: NVIDIA GeForce RTX 3090
GPU 2: NVIDIA GeForce RTX 3090

Nvidia driver version: 545.23.08
cuDNN version: Probably one of the following:
[/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.5](https://vscode-remote+ssh-002dremote-002b10-002e40-002e116-002e16.vscode-resource.vscode-cdn.net/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.5)
[/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.5](https://vscode-remote+ssh-002dremote-002b10-002e40-002e116-002e16.vscode-resource.vscode-cdn.net/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.5)
[/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.5](https://vscode-remote+ssh-002dremote-002b10-002e40-002e116-002e16.vscode-resource.vscode-cdn.net/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.5)
[/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.5](https://vscode-remote+ssh-002dremote-002b10-002e40-002e116-002e16.vscode-resource.vscode-cdn.net/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.5)
[/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.5](https://vscode-remote+ssh-002dremote-002b10-002e40-002e116-002e16.vscode-resource.vscode-cdn.net/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.5)
[/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.5](https://vscode-remote+ssh-002dremote-002b10-002e40-002e116-002e16.vscode-resource.vscode-cdn.net/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.5)
[/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.5](https://vscode-remote+ssh-002dremote-002b10-002e40-002e116-002e16.vscode-resource.vscode-cdn.net/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.5)
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                    x86_64
CPU op-mode(s):                  32-bit, 64-bit
Byte Order:                      Little Endian
Address sizes:                   43 bits physical, 48 bits virtual
CPU(s):                          64
On-line CPU(s) list:             0-63
Thread(s) per core:              2
Core(s) per socket:              32
Socket(s):                       1
NUMA node(s):                    1
Vendor ID:                       AuthenticAMD
CPU family:                      23
Model:                           49
Model name:                      AMD Ryzen Threadripper PRO 3975WX 32-Cores
Stepping:                        0
Frequency boost:                 enabled
CPU MHz:                         2200.000
CPU max MHz:                     3500.0000
CPU min MHz:                     2200.0000
BogoMIPS:                        6986.53
Virtualization:                  AMD-V
L1d cache:                       1 MiB
L1i cache:                       1 MiB
L2 cache:                        16 MiB
L3 cache:                        128 MiB
NUMA node0 CPU(s):               0-63
Vulnerability Itlb multihit:     Not affected
Vulnerability L1tf:              Not affected
Vulnerability Mds:               Not affected
Vulnerability Meltdown:          Not affected
Vulnerability Mmio stale data:   Not affected
Vulnerability Retbleed:          Mitigation; untrained return thunk; SMT enabled with STIBP protection
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1:        Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:        Mitigation; Retpolines, IBPB conditional, STIBP always-on, RSB filling, PBRSB-eIBRS Not affected
Vulnerability Srbds:             Not affected
Vulnerability Tsx async abort:   Not affected
Flags:                           fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr rdpru wbnoinvd arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl umip rdpid overflow_recov succor smca sme sev sev_es

Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.1.3.1
[pip3] nvidia-cuda-cupti-cu12==12.1.105
[pip3] nvidia-cuda-nvrtc-cu12==12.1.105
[pip3] nvidia-cuda-runtime-cu12==12.1.105
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.0.2.54
[pip3] nvidia-curand-cu12==10.3.2.106
[pip3] nvidia-cusolver-cu12==11.4.5.107
[pip3] nvidia-cusparse-cu12==12.1.0.106
[pip3] nvidia-ml-py==12.555.43
[pip3] nvidia-nccl-cu12==2.20.5
[pip3] nvidia-nvjitlink-cu12==12.5.40
[pip3] nvidia-nvtx-cu12==12.1.105
[pip3] pytorch-lightning==2.3.0
[pip3] pyzmq==25.1.2
[pip3] torch==2.4.0
[pip3] torchmetrics==1.4.0.post0
[pip3] torchvision==0.19.0
[pip3] transformers==4.45.2
[pip3] triton==3.0.0
[pip3] tritonclient==2.48.0
[conda] numpy                     1.26.4                   pypi_0    pypi
[conda] nvidia-cublas-cu12        12.1.3.1                 pypi_0    pypi
[conda] nvidia-cuda-cupti-cu12    12.1.105                 pypi_0    pypi
[conda] nvidia-cuda-nvrtc-cu12    12.1.105                 pypi_0    pypi
[conda] nvidia-cuda-runtime-cu12  12.1.105                 pypi_0    pypi
[conda] nvidia-cudnn-cu12         9.1.0.70                 pypi_0    pypi
[conda] nvidia-cufft-cu12         11.0.2.54                pypi_0    pypi
[conda] nvidia-curand-cu12        10.3.2.106               pypi_0    pypi
[conda] nvidia-cusolver-cu12      11.4.5.107               pypi_0    pypi
[conda] nvidia-cusparse-cu12      12.1.0.106               pypi_0    pypi
[conda] nvidia-ml-py              12.555.43                pypi_0    pypi
[conda] nvidia-nccl-cu12          2.20.5                   pypi_0    pypi
[conda] nvidia-nvjitlink-cu12     12.5.40                  pypi_0    pypi
[conda] nvidia-nvtx-cu12          12.1.105                 pypi_0    pypi
[conda] pytorch-lightning         2.3.0                    pypi_0    pypi
[conda] pyzmq                     25.1.2          py312h6a678d5_0  
[conda] torch                     2.4.0                    pypi_0    pypi
[conda] torchmetrics              1.4.0.post0              pypi_0    pypi
[conda] torchvision               0.19.0                   pypi_0    pypi
[conda] transformers              4.45.2                   pypi_0    pypi
[conda] triton                    3.0.0                    pypi_0    pypi
[conda] tritonclient              2.48.0                   pypi_0    pypi
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.6.3.post1
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0	GPU1	GPU2	CPU Affinity	NUMA Affinity	GPU NUMA ID
GPU0	 X 	PHB	SYS	0-63	0		N/A
GPU1	PHB	 X 	SYS	0-63	0		N/A
GPU2	SYS	SYS	 X 	0-63	0		N/A

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

How would you like to use vllm

I'm trying to do batch inference with multimodal input data like this:

llm = LLM(model='OpenGVLab/InternVL2-1B', trust_remote_code=True, max_num_seqs=5, enforce_eager=True)
sampling_params = SamplingParams(max_tokens=128, temperature=0.0)
beam_params = BeamSearchParams(beam_width=3, max_tokens=128, temperature=0.0)
for image_file in image_files:
    input = {
              "prompt": prompt,
              "multi_modal_data": { "image": Image.open(image_file)},
            }
    list_input.append(input)
outputs = llm.generate(list_input, sampling_params)
outputs = llm.beam_search(list_input, beam_params)

The model run perfectly with generate() method but when I call beam_search() method I got this error:
TypeError: TextEncodeInput must be Union[TextInputSequence, Tuple[InputSequence, InputSequence]]

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.

Metadata

Metadata

Assignees

No one assigned

    Labels

    usageHow to use vllm

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions