-
-
Notifications
You must be signed in to change notification settings - Fork 10.8k
Closed
Labels
bugSomething isn't workingSomething isn't working
Description
Your current environment
PyTorch version: 2.3.0a0+40ec155e58.nv24.03
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A
OS: Ubuntu 22.04.4 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: version 3.28.3
Libc version: glibc-2.35
Python version: 3.10.12 (main, Mar 22 2024, 16:50:05) [GCC 11.4.0] (64-bit runtime)
Python platform: Linux-4.19.91-014-kangaroo.2.10.13.5c249cdaf.x86_64-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 12.4.99
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA H800
GPU 1: NVIDIA H800
Nvidia driver version: 525.105.17
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.9.0.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.0.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.0.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.0.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.0.0
/usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.0.0
/usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.0.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.0.0
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 52 bits physical, 57 bits virtual
Byte Order: Little Endian
CPU(s): 8
On-line CPU(s) list: 0-7
Vendor ID: GenuineIntel
Model name: Intel(R) Xeon(R) Processor
CPU family: 6
Model: 143
Thread(s) per core: 1
Core(s) per socket: 8
Socket(s): 1
Stepping: 8
BogoMIPS: 5200.00
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq vmx ssse3 fma cx16 pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch cpuid_fault invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves avx512_bf16 wbnoinvd avx512vbmi umip pku waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq rdpid cldemote movdiri movdir64b fsrm md_clear arch_capabilities
Virtualization: VT-x
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 384 KiB (8 instances)
L1i cache: 256 KiB (8 instances)
L2 cache: 16 MiB (8 instances)
L3 cache: 97.5 MiB (1 instance)
NUMA node(s): 1
NUMA node0 CPU(s): 0-7
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Spec store bypass: Vulnerable
Vulnerability Spectre v1: Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers
Vulnerability Spectre v2: Vulnerable, IBPB: disabled, STIBP: disabled
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Versions of relevant libraries:
[pip3] numpy==1.24.4
[pip3] onnx==1.15.0rc2
[pip3] optree==0.10.0
[pip3] pytorch-quantization==2.1.2
[pip3] pytorch-triton==2.2.0+e28a256d7
[pip3] torch==2.3.0a0+40ec155e58.nv24.3
[pip3] torch-tensorrt==2.3.0a0
[pip3] torchdata==0.7.1a0
[pip3] torchtext==0.17.0a0
[pip3] torchtyping==0.1.4
[pip3] torchvision==0.18.0a0
[pip3] transformers==4.43.2
[conda] Could not collect
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.5.2
vLLM Build Flags:
CUDA Archs: 5.2 6.0 6.1 7.0 7.2 7.5 8.0 8.6 8.7 9.0+PTX; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 GPU1 NIC0 NIC1 CPU Affinity NUMA Affinity
GPU0 X NV8 PHB PHB 0-7 N/A
GPU1 NV8 X PHB PHB 0-7 N/A
NIC0 PHB PHB X PHB
NIC1 PHB PHB PHB X
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
NIC Legend:
NIC0: mlx5_0
NIC1: mlx5_1
🐛 Describe the bug
We used VLLM to execute the qwen2 model with TP=4 in Ray Actor, but one of the four processes reported an error "No CUDA GPUs are available".
When executing vllm separately without Ray Actor wrapper, it can be executed normally.
[rank0]: ray.exceptions.ActorDiedError: The actor died because of an error raised in its creation task, ray::LLMRayActor.__init__() (pid=410475, ip=10.207.66.36, actor_id=90f87b7c95de4bb49deafe5c01000000, repr=<rlhf.vllm_generation.vllm_engine.LLMRayActor object at 0x7f8201a56080>)
[rank0]: File "/cpfs/2926428ee2463e44/user/user1/rlhf/vllm_generation/vllm_engine.py", line 58, in __init__
[rank0]: self.llm = vllm.LLM(*args, load_format=LoadFormat.AUTO, **kwargs)
[rank0]: File "/usr/local/lib/python3.10/dist-packages/vllm/entrypoints/llm.py", line 156, in __init__
[rank0]: self.llm_engine = LLMEngine.from_engine_args(
[rank0]: File "/usr/local/lib/python3.10/dist-packages/vllm/engine/llm_engine.py", line 440, in from_engine_args
[rank0]: engine = cls(
[rank0]: File "/usr/local/lib/python3.10/dist-packages/vllm/engine/llm_engine.py", line 250, in __init__
[rank0]: self.model_executor = executor_class(
[rank0]: File "/usr/local/lib/python3.10/dist-packages/vllm/executor/distributed_gpu_executor.py", line 25, in __init__
[rank0]: super().__init__(*args, **kwargs)
[rank0]: File "/usr/local/lib/python3.10/dist-packages/vllm/executor/executor_base.py", line 47, in __init__
[rank0]: self._init_executor()
[rank0]: File "/usr/local/lib/python3.10/dist-packages/vllm/executor/ray_gpu_executor.py", line 61, in _init_executor
[rank0]: self._init_workers_ray(placement_group)
[rank0]: File "/usr/local/lib/python3.10/dist-packages/vllm/executor/ray_gpu_executor.py", line 233, in _init_workers_ray
[rank0]: self._run_workers("init_device")
[rank0]: File "/usr/local/lib/python3.10/dist-packages/vllm/executor/ray_gpu_executor.py", line 350, in _run_workers
[rank0]: self.driver_worker.execute_method(method, *driver_args,
[rank0]: File "/usr/local/lib/python3.10/dist-packages/vllm/worker/worker_base.py", line 383, in execute_method
[rank0]: raise e
[rank0]: File "/usr/local/lib/python3.10/dist-packages/vllm/worker/worker_base.py", line 374, in execute_method
[rank0]: return executor(*args, **kwargs)
[rank0]: File "/usr/local/lib/python3.10/dist-packages/vllm/worker/worker.py", line 124, in init_device
[rank0]: torch.cuda.set_device(self.device)
[rank0]: File "/usr/local/lib/python3.10/dist-packages/torch/cuda/__init__.py", line 424, in set_device
[rank0]: torch._C._cuda_setDevice(device)
[rank0]: File "/usr/local/lib/python3.10/dist-packages/torch/cuda/__init__.py", line 318, in _lazy_init
[rank0]: torch._C._cuda_init()
[rank0]: RuntimeError: No CUDA GPUs are available
imp2002 and Jack47
Metadata
Metadata
Assignees
Labels
bugSomething isn't workingSomething isn't working