Skip to content

[Bug]: vLLM engine v1 with Qwen/Qwen3-Reranker-0.6B crashes with long input #24327

@lpapavassiliou

Description

@lpapavassiliou

Your current environment

The output of python collect_env.py
Collecting environment information...
==============================
        System Info
==============================
OS                           : Ubuntu 20.04.6 LTS (x86_64)
GCC version                  : (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0
Clang version                : Could not collect
CMake version                : version 3.16.3
Libc version                 : glibc-2.31

==============================
       PyTorch Info
==============================
PyTorch version              : 2.7.1+cu126
Is debug build               : False
CUDA used to build PyTorch   : 12.6
ROCM used to build PyTorch   : N/A

==============================
      Python Environment
==============================
Python version               : 3.11.13 | packaged by conda-forge | (main, Jun  4 2025, 14:48:23) [GCC 13.3.0] (64-bit runtime)
Python platform              : Linux-6.1.100+-x86_64-with-glibc2.31

==============================
       CUDA / GPU Info
==============================
Is CUDA available            : True
CUDA runtime version         : Could not collect
CUDA_MODULE_LOADING set to   : LAZY
GPU models and configuration : GPU 0: NVIDIA A100-SXM4-40GB
Nvidia driver version        : 550.90.07
cuDNN version                : Could not collect
HIP runtime version          : N/A
MIOpen runtime version       : N/A
Is XNNPACK available         : True

==============================
          CPU Info
==============================
Architecture:                         x86_64
CPU op-mode(s):                       32-bit, 64-bit
Byte Order:                           Little Endian
Address sizes:                        46 bits physical, 48 bits virtual
CPU(s):                               12
On-line CPU(s) list:                  0-11
Thread(s) per core:                   2
Core(s) per socket:                   6
Socket(s):                            1
NUMA node(s):                         1
Vendor ID:                            GenuineIntel
CPU family:                           6
Model:                                85
Model name:                           Intel(R) Xeon(R) CPU @ 2.20GHz
Stepping:                             7
CPU MHz:                              2200.216
BogoMIPS:                             4400.43
Hypervisor vendor:                    KVM
Virtualization type:                  full
L1d cache:                            192 KiB
L1i cache:                            192 KiB
L2 cache:                             6 MiB
L3 cache:                             38.5 MiB
NUMA node0 CPU(s):                    0-11
Vulnerability Gather data sampling:   Not affected
Vulnerability Itlb multihit:          Not affected
Vulnerability L1tf:                   Not affected
Vulnerability Mds:                    Not affected
Vulnerability Meltdown:               Not affected
Vulnerability Mmio stale data:        Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed:               Mitigation; Enhanced IBRS
Vulnerability Spec rstack overflow:   Not affected
Vulnerability Spec store bypass:      Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1:             Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:             Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI SW loop, KVM SW loop
Vulnerability Srbds:                  Not affected
Vulnerability Tsx async abort:        Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Flags:                                fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities

==============================
Versions of relevant libraries
==============================
[pip3] numpy==2.2.6
[pip3] nvidia-cublas-cu12==12.6.4.1
[pip3] nvidia-cuda-cupti-cu12==12.6.80
[pip3] nvidia-cuda-nvrtc-cu12==12.6.77
[pip3] nvidia-cuda-runtime-cu12==12.6.77
[pip3] nvidia-cudnn-cu12==9.5.1.17
[pip3] nvidia-cufft-cu12==11.3.0.4
[pip3] nvidia-cufile-cu12==1.11.1.6
[pip3] nvidia-curand-cu12==10.3.7.77
[pip3] nvidia-cusolver-cu12==11.7.1.2
[pip3] nvidia-cusparse-cu12==12.5.4.2
[pip3] nvidia-cusparselt-cu12==0.6.3
[pip3] nvidia-nccl-cu12==2.26.2
[pip3] nvidia-nvjitlink-cu12==12.6.85
[pip3] nvidia-nvtx-cu12==12.6.77
[pip3] pyzmq==27.0.2
[pip3] torch==2.7.1
[pip3] torchaudio==2.7.1
[pip3] torchvision==0.22.1
[pip3] transformers==4.56.1
[pip3] triton==3.3.1
[conda] numpy                     2.2.6                    pypi_0    pypi
[conda] nvidia-cublas-cu12        12.6.4.1                 pypi_0    pypi
[conda] nvidia-cuda-cupti-cu12    12.6.80                  pypi_0    pypi
[conda] nvidia-cuda-nvrtc-cu12    12.6.77                  pypi_0    pypi
[conda] nvidia-cuda-runtime-cu12  12.6.77                  pypi_0    pypi
[conda] nvidia-cudnn-cu12         9.5.1.17                 pypi_0    pypi
[conda] nvidia-cufft-cu12         11.3.0.4                 pypi_0    pypi
[conda] nvidia-cufile-cu12        1.11.1.6                 pypi_0    pypi
[conda] nvidia-curand-cu12        10.3.7.77                pypi_0    pypi
[conda] nvidia-cusolver-cu12      11.7.1.2                 pypi_0    pypi
[conda] nvidia-cusparse-cu12      12.5.4.2                 pypi_0    pypi
[conda] nvidia-cusparselt-cu12    0.6.3                    pypi_0    pypi
[conda] nvidia-nccl-cu12          2.26.2                   pypi_0    pypi
[conda] nvidia-nvjitlink-cu12     12.6.85                  pypi_0    pypi
[conda] nvidia-nvtx-cu12          12.6.77                  pypi_0    pypi
[conda] pyzmq                     27.0.2                   pypi_0    pypi
[conda] torch                     2.7.1                    pypi_0    pypi
[conda] torchaudio                2.7.1                    pypi_0    pypi
[conda] torchvision               0.22.1                   pypi_0    pypi
[conda] transformers              4.56.1                   pypi_0    pypi
[conda] triton                    3.3.1                    pypi_0    pypi

==============================
         vLLM Info
==============================
ROCM Version                 : Could not collect
Neuron SDK Version           : N/A
vLLM Version                 : 0.10.1.1
vLLM Build Flags:
  CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
  	GPU0	CPU Affinity	NUMA Affinity	GPU NUMA ID
GPU0	 X 	0-11	0		N/A

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

==============================
     Environment Variables
==============================
LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
NVIDIA_VISIBLE_DEVICES=all
NVIDIA_DRIVER_CAPABILITIES=compute,utility
CUDA_DEVICE_ORDER=PCI_BUS_ID
NCCL_CUMEM_ENABLE=0
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY

🐛 Describe the bug

Logs
(vllm) user ➜ vllm serve Qwen/Qwen3-Reranker-0.6B --task score --port 8080
INFO 09-05 13:22:09 [init.py:241] Automatically detected platform cuda.
WARNING 09-05 13:22:12 [init.py:1734] argument 'task' is deprecated
(APIServer pid=5410) INFO 09-05 13:22:12 [api_server.py:1805] vLLM API server version 0.10.1.1
(APIServer pid=5410) INFO 09-05 13:22:12 [utils.py:326] non-default args: {'model_tag': 'Qwen/Qwen3-Reranker-0.6B', 'port': 8080, 'model': 'Qwen/Qwen3-Reranker-0.6B', 'task': 'score'}
(APIServer pid=5410) INFO 09-05 13:22:20 [init.py:711] Resolved architecture: Qwen3ForCausalLM
(APIServer pid=5410) torch_dtype is deprecated! Use dtype instead!
(APIServer pid=5410) INFO 09-05 13:22:20 [init.py:1750] Using max model len 40960
(APIServer pid=5410) INFO 09-05 13:22:20 [arg_utils.py:1608] (Enabling) chunked prefill by default
(APIServer pid=5410) INFO 09-05 13:22:20 [arg_utils.py:1611] (Enabling) prefix caching by default
(APIServer pid=5410) INFO 09-05 13:22:20 [scheduler.py:222] Chunked prefill is enabled with max_num_batched_tokens=2048.
INFO 09-05 13:22:26 [init.py:241] Automatically detected platform cuda.
(EngineCore_0 pid=5465) INFO 09-05 13:22:28 [core.py:636] Waiting for init message from front-end.
(EngineCore_0 pid=5465) INFO 09-05 13:22:28 [core.py:74] Initializing a V1 LLM engine (v0.10.1.1) with config: model='Qwen/Qwen3-Reranker-0.6B', speculative_config=None, tokenizer='Qwen/Qwen3-Reranker-0.6B', skip_tokenizer_init=False, tokenizer_mode=auto, revision=None, override_neuron_config={}, tokenizer_revision=None, trust_remote_code=False, dtype=torch.bfloat16, max_seq_len=40960, download_dir=None, load_format=auto, tensor_parallel_size=1, pipeline_parallel_size=1, disable_custom_all_reduce=False, quantization=None, enforce_eager=False, kv_cache_dtype=auto, device_config=cuda, decoding_config=DecodingConfig(backend='auto', disable_fallback=False, disable_any_whitespace=False, disable_additional_properties=False, reasoning_backend=''), observability_config=ObservabilityConfig(show_hidden_metrics_for_version=None, otlp_traces_endpoint=None, collect_detailed_traces=None), seed=0, served_model_name=Qwen/Qwen3-Reranker-0.6B, enable_prefix_caching=True, chunked_prefill_enabled=True, use_async_output_proc=False, pooler_config=PoolerConfig(pooling_type='LAST', normalize=None, dimensions=None, activation=None, softmax=None, step_tag_id=None, returned_token_ids=None, enable_chunked_processing=None, max_embed_len=None), compilation_config={"level":3,"debug_dump_path":"","cache_dir":"","backend":"","custom_ops":[],"splitting_ops":["vllm.unified_attention","vllm.unified_attention_with_output","vllm.mamba_mixer2"],"use_inductor":true,"compile_sizes":[],"inductor_compile_config":{"enable_auto_functionalized_v2":false},"inductor_passes":{},"cudagraph_mode":1,"use_cudagraph":true,"cudagraph_num_of_warmups":1,"cudagraph_capture_sizes":[512,504,496,488,480,472,464,456,448,440,432,424,416,408,400,392,384,376,368,360,352,344,336,328,320,312,304,296,288,280,272,264,256,248,240,232,224,216,208,200,192,184,176,168,160,152,144,136,128,120,112,104,96,88,80,72,64,56,48,40,32,24,16,8,4,2,1],"cudagraph_copy_inputs":false,"full_cuda_graph":false,"pass_config":{},"max_capture_size":512,"local_cache_dir":null}
(EngineCore_0 pid=5465) INFO 09-05 13:22:30 [parallel_state.py:1134] rank 0 in world size 1 is assigned as DP rank 0, PP rank 0, TP rank 0, EP rank 0
(EngineCore_0 pid=5465) WARNING 09-05 13:22:30 [topk_topp_sampler.py:61] FlashInfer is not available. Falling back to the PyTorch-native implementation of top-p & top-k sampling. For the best performance, please install FlashInfer.
(EngineCore_0 pid=5465) INFO 09-05 13:22:30 [gpu_model_runner.py:1953] Starting to load model Qwen/Qwen3-Reranker-0.6B...
(EngineCore_0 pid=5465) INFO 09-05 13:22:30 [gpu_model_runner.py:1985] Loading model from scratch...
(EngineCore_0 pid=5465) INFO 09-05 13:22:30 [cuda.py:328] Using Flash Attention backend on V1 engine.
(EngineCore_0 pid=5465) INFO 09-05 13:22:30 [weight_utils.py:296] Using model weights format ['*.safetensors']
(EngineCore_0 pid=5465) INFO 09-05 13:22:31 [weight_utils.py:349] No model.safetensors.index.json found in remote.
Loading safetensors checkpoint shards:   0% Completed | 0/1 [00:00<?, ?it/s]
Loading safetensors checkpoint shards: 100% Completed | 1/1 [00:00<00:00,  2.66it/s]
Loading safetensors checkpoint shards: 100% Completed | 1/1 [00:00<00:00,  2.65it/s]

The vLLM server crashes when processing reranking requests with long documents using the default V1 engine, but works correctly with the V0 engine.

vLLM Version: 0.10.1.1
Model: Qwen/Qwen3-Reranker-0.6B
Task: score (reranking)
Platform: CUDA
Python Version: 3.11.13
GPU: A100

Steps to Reproduce

  1. Start vLLM server with V1 engine (default):
    vllm serve Qwen/Qwen3-Reranker-0.6B --task score --port 8080

  2. Send reranking request with long documents:
    5 documents ~3,000 characters each

Expected Behavior: The server should process the reranking request successfully and return relevance scores.
Actual Behavior: The vLLM server crashes when processing the request.
Workaround: Using the V0 engine resolves the issue
VLLM_USE_V1=0 vllm serve Qwen/Qwen3-Reranker-0.6B --task score --port 8080

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't working

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions