Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 9 additions & 3 deletions src/compressed_tensors/quantization/quant_args.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,7 @@
__all__ = [
"FP8_E4M3_DATA",
"FP4_E2M1_DATA",
"BFLOAT16_DATA",
"FloatArgs",
"QuantizationType",
"QuantizationStrategy",
Expand All @@ -38,9 +39,9 @@
class FloatArgs:
exponent: int
mantissa: int
bits: int
max: float
min: float
bits: Optional[int] = None
max: Optional[float] = None
min: Optional[float] = None
dtype: Optional[torch.dtype] = None


Expand Down Expand Up @@ -76,6 +77,11 @@ class FP8_E4M3_DATA(FloatArgs):
dtype = torch.float8_e4m3fn


class BFLOAT16_DATA(FloatArgs):
exponent = 8
mantissa = 7


class QuantizationType(str, Enum):
"""
Enum storing quantization type options
Expand Down
1 change: 1 addition & 0 deletions src/compressed_tensors/quantization/utils/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,3 +14,4 @@

# flake8: noqa
from .helpers import *
from .mxfp4_utils import *
97 changes: 97 additions & 0 deletions src/compressed_tensors/quantization/utils/mxfp4_utils.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,97 @@
# Copyright (c) 2021 - present / Neuralmagic, Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import torch
from compressed_tensors.quantization.quant_args import BFLOAT16_DATA, FP4_E2M1_DATA


__all__ = ["convert_mxfp4_exp_scale", "generate_mxfp4_scales", "round_to_power_2"]

# Reference: https://github.com/vllm-project/vllm/blob/main/tests/quantization/reference_mxfp4.py # noqa: E501


def convert_mxfp4_exp_scale(
scale: torch.Tensor, dtype: torch.dtype = torch.bfloat16
) -> torch.Tensor:
"""
Converts mxfp4 scales. Scales are powers of 2, with the
exponents stored in uint8. Converts to dense dtype so that
they can be applied to the weights and activations during QDQ

:param scale: uint8 exponent scale
:param dtype: dense dtype
"""
assert scale.dtype == torch.uint8
scale_exp = scale.to(torch.int32) - 127
scale = 2.00 ** (scale_exp.to(torch.float))
return scale.to(dtype)


def round_to_power_2(x: torch.Tensor) -> torch.Tensor:
"""
Round values to the closest power of 2.
This is done by masking the values with BFLOAT16_SIGN_EXPONENT_MASK
which essentially removes the mantissa and keeps the exponent.
i.e the closest power of 2 for the input_value.

E.g:
0.0825 = 1.32 (mantissa) x 2**-4 (exponent)
0.0825 ==> -4 (exponent) + 127 = 123 = 01111011 (8 bits for bfloat16)
0.0825 ==> 0.32 (mantissa) = 0101001 (7 bits for bfloat16)
0.0825 == 0b01111011_0101001 (bfloat16)
0b01111011_0101001 & 111111111_0000000 == 0b01111011_0000000
Keep the exponent + sign bit to give you the closest power of 2, 0.0625

:param x: tensor to round to closest power of 2
"""
assert x.dtype == torch.bfloat16
x = x.view(torch.uint16).to(torch.int32)

# Find closest power of 2
BFLOAT16_VAL_TO_ADD = 1 << (BFLOAT16_DATA.mantissa - FP4_E2M1_DATA.mantissa - 1)
# Add value to push the value to the next exponent
BFLOAT16_SIGN_EXPONENT_MASK = (
(1 << (BFLOAT16_DATA.exponent + 1)) - 1
) << BFLOAT16_DATA.mantissa
# mask to only keep exponent - we conservatively round down
# to better represent smaller numbers / prevent overflow
block_max_uint = torch.bitwise_and(
x + BFLOAT16_VAL_TO_ADD, BFLOAT16_SIGN_EXPONENT_MASK
)
return block_max_uint.to(torch.uint16).view(torch.bfloat16)


def generate_mxfp4_scales(x: torch.Tensor) -> torch.Tensor:
"""
Generate mxfp4 scales. The scales require the following steps
1. Round to the closest power of 2
2. Convert to exponent
3. Store in uint8

Called when calculating qparams using observers.

:param x: tensor to round to closest power of 2
:returns uint8 scales as exponents
"""
# Round to closest power of 2
scale_power_2 = round_to_power_2(x)
# Convert to exponent
scale_exp = 127 + torch.floor(torch.log2(scale_power_2)).to(torch.int32) - 2
# Clamp and store in uint8, as expected by mxfp4
scale_exp = torch.clamp(
scale_exp,
max=torch.iinfo(torch.uint8).max,
min=torch.iinfo(torch.uint8).min,
)
return scale_exp.to(torch.uint8)
79 changes: 79 additions & 0 deletions tests/test_quantization/test_utils/test_mxfp4_utils.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,79 @@
# Copyright (c) 2021 - present / Neuralmagic, Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import torch
from compressed_tensors.quantization.utils import (
convert_mxfp4_exp_scale,
generate_mxfp4_scales,
round_to_power_2,
)


def test_round_power_2_noise():
powers = torch.Tensor(
[
[2**-10, 2**-9, 2**-8, 2**-7, 2**-6],
[2**-5, 2**-4, 2**-3, 2**-2, 2**-1],
[2**0, 2**1, 2**-10, 2**-9, 2**-8],
[2**-7, 2**-6, 2**-5, 2**-4, 2**-3],
[2**-2, 2**-1, 2**0, 2**1, 2**-10],
]
).to(torch.bfloat16)

noise = torch.rand_like(powers) * 0.2
powers_noisy = powers * (1 + noise)
rounded = round_to_power_2(powers_noisy)
assert torch.equal(rounded, powers)


def test_round_power_2():
x = torch.Tensor(
(
[5.687891, -8.291567, -1.540329, -0.315635, 0.965272],
[-6.944130, 0.073246, -0.451778, 8.571118, -9.856593],
[-0.040571, -0.708509, 2.485657, -4.003352, -0.995600],
[0.224199, 5.032586, -1.309816, -0.621958, 7.290238],
[-9.848001, -0.290731, 1.501562, 0.379829, -5.312081],
)
).to(torch.bfloat16)
x_rounded = torch.Tensor(
(
[4.000000, -8.000000, -1.000000, -0.250000, 1.000000],
[-4.000000, 0.062500, -0.500000, 8.000000, -8.000000],
[-0.0312, -0.500000, 2.000000, -4.000000, -1.000000],
[0.250000, 4.000000, -1.000000, -0.500000, 8.000000],
[-8.000000, -0.250000, 1.000000, 0.250000, -4.000000],
)
).to(torch.bfloat16)
rounded = round_to_power_2(x)
assert torch.equal(rounded, x_rounded)


def test_mxfp4_scales_e2e():
mock_weight = torch.normal(mean=0.0002, std=0.0576, size=(2880, 2880))

x = mock_weight.reshape(*mock_weight.shape[:-1], -1, 32).to(torch.bfloat16)
min_vals = torch.amin(x, dim=-1)
max_vals = torch.amax(x, dim=-1)

min_vals = torch.min(min_vals, torch.zeros_like(min_vals))
max_vals = torch.max(max_vals, torch.zeros_like(max_vals))
block_max = torch.max(torch.abs(min_vals), torch.abs(max_vals))

scales_generated = generate_mxfp4_scales(block_max)
converted_ct = convert_mxfp4_exp_scale(scales_generated)

scales_exp = torch.log2(converted_ct)
block_max_exp = torch.floor(torch.log2(round_to_power_2(block_max))) - 2
assert torch.equal(scales_exp, block_max_exp)