-
Notifications
You must be signed in to change notification settings - Fork 33
[Transform] Attention/Cache transforms #436
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from all commits
Commits
Show all changes
7 commits
Select commit
Hold shift + click to select a range
1c9bf45
attention quant
kylesayrs 35acc55
reduce diff
kylesayrs a9f6e1f
address nits
kylesayrs 311a9ab
fix kv cache serialization, add tests
kylesayrs 8c99f63
fix style
kylesayrs 5225515
do not force zp for attention
kylesayrs a677372
populate ALL_MASK_ATTENTION_FUNCTIONS
kylesayrs File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,18 @@ | ||
| # Copyright (c) 2021 - present / Neuralmagic, Inc. All Rights Reserved. | ||
| # | ||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||
| # you may not use this file except in compliance with the License. | ||
| # You may obtain a copy of the License at | ||
| # | ||
| # http://www.apache.org/licenses/LICENSE-2.0 | ||
| # | ||
| # Unless required by applicable law or agreed to in writing, | ||
| # software distributed under the License is distributed on an "AS IS" BASIS, | ||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| # See the License for the specific language governing permissions and | ||
| # limitations under the License. | ||
|
|
||
| # flake8: noqa | ||
| # isort: off | ||
| from .kvcache import * | ||
| from .attention import * |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,147 @@ | ||
| # Copyright (c) 2021 - present / Neuralmagic, Inc. All Rights Reserved. | ||
| # | ||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||
| # you may not use this file except in compliance with the License. | ||
| # You may obtain a copy of the License at | ||
| # | ||
| # http://www.apache.org/licenses/LICENSE-2.0 | ||
| # | ||
| # Unless required by applicable law or agreed to in writing, | ||
| # software distributed under the License is distributed on an "AS IS" BASIS, | ||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| # See the License for the specific language governing permissions and | ||
| # limitations under the License. | ||
|
|
||
| import inspect | ||
| from typing import Callable, Optional | ||
|
|
||
| from compressed_tensors.modeling.kvcache import initialize_hooked_kv_cache | ||
| from compressed_tensors.quantization.lifecycle.forward import forward_quantize | ||
| from compressed_tensors.utils import getattr_chain | ||
| from compressed_tensors.utils.internal import InternalModule | ||
| from torch import Tensor | ||
| from torch.nn import Module | ||
| from torch.utils.hooks import RemovableHandle | ||
| from transformers import PretrainedConfig, PreTrainedModel | ||
| from transformers.masking_utils import ALL_MASK_ATTENTION_FUNCTIONS | ||
| from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS | ||
|
|
||
|
|
||
| __all__ = [ | ||
| "QuantizedAttentionImpl", | ||
| "initialize_hooked_attention", | ||
| "register_query_hook", | ||
| "IMPL_ATTR", | ||
| ] | ||
|
|
||
|
|
||
| IMPL_ATTR = "impl" | ||
| HOOKED_ATTENTION_NAME = "ct_hooked_attention" | ||
|
|
||
|
|
||
| class QuantizedAttentionImpl(InternalModule): | ||
| """ | ||
| QuantizedAttentionImpl module which wraps the functionality of the original | ||
| attention implementation. Unlike the original attention function, this | ||
| implementation is a `torch.nn.Module` which can be hooked to trigger | ||
| transforms and calibration hooks. | ||
|
|
||
| This module works by being registered as a submodule to attention modules via | ||
| `initialize_hooked_attention`, registering a new attention implementation function | ||
| which calls this module, then setting the model attention implementation to the new | ||
| function. After triggering hooks and quantization, this module calls the original | ||
| attention implementation function. | ||
| """ | ||
|
|
||
| _original_impl = "eager" | ||
|
|
||
| def __init__(self, config: PretrainedConfig): | ||
| super().__init__() | ||
| self.config = config | ||
|
|
||
| def forward( | ||
| self, | ||
| module: Module, | ||
| query: Tensor, | ||
| key: Tensor, | ||
| value: Tensor, | ||
| *args, | ||
| **kwargs, | ||
| ): | ||
| # quantization | ||
| quant_args_attr = "quantization_scheme.input_activations" | ||
| quant_args = getattr_chain(module, quant_args_attr, None) | ||
| quant_enabled = getattr(module, "quantization_enabled", True) | ||
| if quant_args is not None and quant_enabled: | ||
| query = forward_quantize(module, query, "q", quant_args) | ||
brian-dellabetta marked this conversation as resolved.
Show resolved
Hide resolved
|
||
|
|
||
| # original attention | ||
| return ALL_ATTENTION_FUNCTIONS[QuantizedAttentionImpl._original_impl]( | ||
| module, | ||
| query, | ||
| key, | ||
| value, | ||
| *args, | ||
| **kwargs, | ||
| ) | ||
|
|
||
|
|
||
| # ----- initialize ----- # | ||
|
|
||
|
|
||
| def _hooked_attention(module: Module, *args, **kwargs): | ||
| assert hasattr(module, IMPL_ATTR), ( | ||
| f"Using {HOOKED_ATTENTION_NAME} attention implementation, " | ||
| f"but attention module does not have {IMPL_ATTR} submodule." | ||
| ) | ||
|
|
||
| return getattr(module, IMPL_ATTR)(module, *args, **kwargs) | ||
|
|
||
|
|
||
| def initialize_hooked_attention(model: PreTrainedModel, module: Module): | ||
| """ | ||
| Initialize `QuantizedAttentionImpl` and `QuantizedKVCache` instances | ||
| attached to attention. Assumes that only one model is hooked at a time. | ||
|
|
||
| :param model: parent model of attention module | ||
| :param module: attention module to initialize with | ||
| """ | ||
| if not hasattr(module, IMPL_ATTR): | ||
| module.register_module(IMPL_ATTR, QuantizedAttentionImpl(model.config)) | ||
|
|
||
| if model.config._attn_implementation != HOOKED_ATTENTION_NAME: | ||
| QuantizedAttentionImpl._original_impl = model.config._attn_implementation | ||
| original_mask = ALL_MASK_ATTENTION_FUNCTIONS[model.config._attn_implementation] | ||
|
|
||
| ALL_ATTENTION_FUNCTIONS.register(HOOKED_ATTENTION_NAME, _hooked_attention) | ||
| ALL_MASK_ATTENTION_FUNCTIONS.register(HOOKED_ATTENTION_NAME, original_mask) | ||
| model.set_attn_implementation(HOOKED_ATTENTION_NAME) | ||
| assert model.config._attn_implementation == HOOKED_ATTENTION_NAME | ||
|
|
||
| initialize_hooked_kv_cache(model, module) | ||
|
|
||
|
|
||
| # ----- hooks ----- # | ||
|
|
||
|
|
||
| def register_query_hook( | ||
| module: Module, hook: Callable[[Module, Tensor], Optional[Tensor]] | ||
| ) -> RemovableHandle: | ||
| """ | ||
| Register a hook which takes post-rope query states as an argument and | ||
| returns the modified query states or `None` | ||
|
|
||
| :param module: attention module to add hook to | ||
| :param hook: query hook function | ||
| """ | ||
| impl: QuantizedAttentionImpl = getattr(module, IMPL_ATTR) | ||
|
|
||
| def _hook(impl: QuantizedAttentionImpl, args, kwargs): | ||
| bound = inspect.signature(impl.forward).bind(*args, **kwargs) | ||
| value = hook(module, bound.arguments["query"]) | ||
| if value is not None: | ||
| bound.arguments["query"] = value | ||
|
|
||
| return bound.args, bound.kwargs | ||
|
|
||
| return impl.register_forward_pre_hook(_hook, with_kwargs=True) | ||
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,183 @@ | ||
| # Copyright (c) 2021 - present / Neuralmagic, Inc. All Rights Reserved. | ||
| # | ||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||
| # you may not use this file except in compliance with the License. | ||
| # You may obtain a copy of the License at | ||
| # | ||
| # http://www.apache.org/licenses/LICENSE-2.0 | ||
| # | ||
| # Unless required by applicable law or agreed to in writing, | ||
| # software distributed under the License is distributed on an "AS IS" BASIS, | ||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| # See the License for the specific language governing permissions and | ||
| # limitations under the License. | ||
|
|
||
| import inspect | ||
| from typing import Any, Callable, Dict, List, Optional, Tuple | ||
| from weakref import ReferenceType, ref | ||
|
|
||
| from compressed_tensors.quantization.lifecycle.forward import forward_quantize | ||
| from compressed_tensors.utils import getattr_chain | ||
| from compressed_tensors.utils.internal import InternalModule | ||
| from torch import Tensor | ||
| from torch.nn import Module | ||
| from torch.utils.hooks import RemovableHandle | ||
| from transformers import Cache, PretrainedConfig, PreTrainedModel | ||
|
|
||
|
|
||
| __all__ = [ | ||
| "QuantizedKVCache", | ||
| "initialize_hooked_kv_cache", | ||
| "register_key_hook", | ||
| "register_value_hook", | ||
| "KV_CACHE_ATTR", | ||
| ] | ||
|
|
||
|
|
||
| KV_CACHE_ATTR = "kv_cache" | ||
|
|
||
|
|
||
| class QuantizedKVCache(InternalModule): | ||
| """ | ||
| QuantizedKVCache module which wraps the functionality of any existing kvcache args. | ||
| Unlike transform Cache instances, this cache is a `torch.nn.Module` which can be | ||
| hooked to trigger transforms and calibration hooks. | ||
|
|
||
| This module works by being registered as a submodule to attention modules via | ||
| `initialize_hooked_kv_cache`, then adding a hook which replaces `past_key_values` | ||
| kwargs with this module. This module adopts the functionality of the replaced cache, | ||
| preserving caching functionality such as sliding window attention, ect. | ||
|
|
||
| :param attn_module: parent attention module | ||
| """ | ||
|
|
||
| def __init__(self, config: PretrainedConfig, attn_module: Module): | ||
| super().__init__() | ||
| self.config = config | ||
| self.attn_module = ref(attn_module) # avoid circular reference | ||
| self.past_key_values: Optional[ReferenceType[Cache]] = None | ||
|
|
||
| def update(self, *args, **kwargs) -> Tuple[Tensor, Tensor]: | ||
| return self(*args, **kwargs) | ||
|
|
||
| def forward( | ||
| self, | ||
| key_states: Tensor, | ||
| value_states: Tensor, | ||
| *args, | ||
| **kwargs, | ||
| ) -> Tuple[Tensor, Tensor]: | ||
| # quantization | ||
| module = self.attn_module() | ||
| quant_args_attr = "quantization_scheme.input_activations" | ||
| quant_args = getattr_chain(module, quant_args_attr, None) | ||
| quant_enabled = getattr(module, "quantization_enabled", True) | ||
| if quant_args is not None and quant_enabled: | ||
| key_states = forward_quantize(module, key_states, "k", quant_args) | ||
| value_states = forward_quantize(module, value_states, "v", quant_args) | ||
|
|
||
| # original cache | ||
| if self.past_key_values is not None: | ||
| ret = self.past_key_values().update( | ||
| key_states, value_states, *args, **kwargs | ||
| ) | ||
| else: | ||
| ret = (key_states, value_states) | ||
| self.past_key_values = None | ||
dsikka marked this conversation as resolved.
Show resolved
Hide resolved
|
||
|
|
||
| return ret | ||
|
|
||
| def add_past_key_values(self, past_key_values: Optional[Cache]): | ||
| if past_key_values is not None: | ||
| self.past_key_values = ref(past_key_values) | ||
| else: | ||
| self.past_key_values = None | ||
|
|
||
|
|
||
| # ----- initialize ----- # | ||
|
|
||
|
|
||
| def _kv_cache_attention_hook( | ||
| module: Module, args: List[Any], kwargs: Dict[str, Any] | ||
| ) -> Tuple[List[Any], Dict[str, Any]]: | ||
| """ | ||
| Hook which should be called before each quantized attention forward pass. | ||
| This hook dynamically replaces the `past_key_values` kwarg to the attention | ||
| forward function. | ||
|
|
||
| The original kvcache object is assigned to QuantizedKVCache().past_key_values | ||
| as a weakref to maintain original cache functionality and compute savings | ||
| """ | ||
| _past_kv_name = ( | ||
| "past_key_values" # transformers#39956 | ||
| if "past_key_values" in inspect.signature(module.forward).parameters | ||
| else "past_key_value" | ||
| ) | ||
| past_key_values: Optional[Cache] = kwargs.get(_past_kv_name, None) | ||
|
|
||
| cache: QuantizedKVCache = getattr(module, KV_CACHE_ATTR) | ||
| cache.add_past_key_values(past_key_values) | ||
| kwargs[_past_kv_name] = cache | ||
|
|
||
| return args, kwargs | ||
|
|
||
|
|
||
| def initialize_hooked_kv_cache(model: PreTrainedModel, module: Module): | ||
| """ | ||
| Initialize a `QuantizedKVCache` instance attached to attention | ||
|
|
||
| :param model: parent model of attention module | ||
| :param module: attention module to initialize with | ||
| """ | ||
| if not hasattr(module, KV_CACHE_ATTR): | ||
| module.register_module(KV_CACHE_ATTR, QuantizedKVCache(model.config, module)) | ||
| module.register_forward_pre_hook(_kv_cache_attention_hook, with_kwargs=True) | ||
dsikka marked this conversation as resolved.
Show resolved
Hide resolved
|
||
|
|
||
|
|
||
| # ----- hooks ----- # | ||
|
|
||
|
|
||
| def register_key_hook( | ||
dsikka marked this conversation as resolved.
Show resolved
Hide resolved
|
||
| module: Module, hook: Callable[[Module, Tensor], Optional[Tensor]] | ||
| ) -> RemovableHandle: | ||
| """ | ||
| Register a hook which takes post-rope key states as an argument and | ||
| returns the modified key states or `None` | ||
|
|
||
| :param module: attention module to add hook to | ||
| :param hook: key hook function | ||
| """ | ||
| kv_cache: QuantizedKVCache = getattr(module, KV_CACHE_ATTR) | ||
|
|
||
| def _hook(cache: QuantizedKVCache, args, kwargs): | ||
| bound = inspect.signature(cache.forward).bind(*args, **kwargs) | ||
| value = hook(module, bound.arguments["key_states"]) | ||
| if value is not None: | ||
| bound.arguments["key_states"] = value | ||
|
|
||
| return bound.args, bound.kwargs | ||
|
|
||
| return kv_cache.register_forward_pre_hook(_hook, with_kwargs=True) | ||
|
|
||
|
|
||
| def register_value_hook( | ||
brian-dellabetta marked this conversation as resolved.
Show resolved
Hide resolved
|
||
| module: Module, hook: Callable[[Module, Tensor], Optional[Tensor]] | ||
| ) -> RemovableHandle: | ||
| """ | ||
| Register a hook which takes value states as an argument and | ||
| returns the modified value states or `None` | ||
|
|
||
| :param module: attention module to add hook to | ||
| :param hook: value hook function | ||
| """ | ||
| kv_cache: QuantizedKVCache = getattr(module, KV_CACHE_ATTR) | ||
|
|
||
| def _hook(cache: QuantizedKVCache, args, kwargs): | ||
| bound = inspect.signature(cache.forward).bind(*args, **kwargs) | ||
| value = hook(module, bound.arguments["value_states"]) | ||
| if value is not None: | ||
| bound.arguments["value_states"] = value | ||
|
|
||
| return bound.args, bound.kwargs | ||
|
|
||
| return kv_cache.register_forward_pre_hook(_hook, with_kwargs=True) | ||
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.