Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 18 additions & 0 deletions src/compressed_tensors/modeling/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,18 @@
# Copyright (c) 2021 - present / Neuralmagic, Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# flake8: noqa
# isort: off
from .kvcache import *
from .attention import *
147 changes: 147 additions & 0 deletions src/compressed_tensors/modeling/attention.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,147 @@
# Copyright (c) 2021 - present / Neuralmagic, Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
from typing import Callable, Optional

from compressed_tensors.modeling.kvcache import initialize_hooked_kv_cache
from compressed_tensors.quantization.lifecycle.forward import forward_quantize
from compressed_tensors.utils import getattr_chain
from compressed_tensors.utils.internal import InternalModule
from torch import Tensor
from torch.nn import Module
from torch.utils.hooks import RemovableHandle
from transformers import PretrainedConfig, PreTrainedModel
from transformers.masking_utils import ALL_MASK_ATTENTION_FUNCTIONS
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS


__all__ = [
"QuantizedAttentionImpl",
"initialize_hooked_attention",
"register_query_hook",
"IMPL_ATTR",
]


IMPL_ATTR = "impl"
HOOKED_ATTENTION_NAME = "ct_hooked_attention"


class QuantizedAttentionImpl(InternalModule):
"""
QuantizedAttentionImpl module which wraps the functionality of the original
attention implementation. Unlike the original attention function, this
implementation is a `torch.nn.Module` which can be hooked to trigger
transforms and calibration hooks.

This module works by being registered as a submodule to attention modules via
`initialize_hooked_attention`, registering a new attention implementation function
which calls this module, then setting the model attention implementation to the new
function. After triggering hooks and quantization, this module calls the original
attention implementation function.
"""

_original_impl = "eager"

def __init__(self, config: PretrainedConfig):
super().__init__()
self.config = config

def forward(
self,
module: Module,
query: Tensor,
key: Tensor,
value: Tensor,
*args,
**kwargs,
):
# quantization
quant_args_attr = "quantization_scheme.input_activations"
quant_args = getattr_chain(module, quant_args_attr, None)
quant_enabled = getattr(module, "quantization_enabled", True)
if quant_args is not None and quant_enabled:
query = forward_quantize(module, query, "q", quant_args)

# original attention
return ALL_ATTENTION_FUNCTIONS[QuantizedAttentionImpl._original_impl](
module,
query,
key,
value,
*args,
**kwargs,
)


# ----- initialize ----- #


def _hooked_attention(module: Module, *args, **kwargs):
assert hasattr(module, IMPL_ATTR), (
f"Using {HOOKED_ATTENTION_NAME} attention implementation, "
f"but attention module does not have {IMPL_ATTR} submodule."
)

return getattr(module, IMPL_ATTR)(module, *args, **kwargs)


def initialize_hooked_attention(model: PreTrainedModel, module: Module):
"""
Initialize `QuantizedAttentionImpl` and `QuantizedKVCache` instances
attached to attention. Assumes that only one model is hooked at a time.

:param model: parent model of attention module
:param module: attention module to initialize with
"""
if not hasattr(module, IMPL_ATTR):
module.register_module(IMPL_ATTR, QuantizedAttentionImpl(model.config))

if model.config._attn_implementation != HOOKED_ATTENTION_NAME:
QuantizedAttentionImpl._original_impl = model.config._attn_implementation
original_mask = ALL_MASK_ATTENTION_FUNCTIONS[model.config._attn_implementation]

ALL_ATTENTION_FUNCTIONS.register(HOOKED_ATTENTION_NAME, _hooked_attention)
ALL_MASK_ATTENTION_FUNCTIONS.register(HOOKED_ATTENTION_NAME, original_mask)
model.set_attn_implementation(HOOKED_ATTENTION_NAME)
assert model.config._attn_implementation == HOOKED_ATTENTION_NAME

initialize_hooked_kv_cache(model, module)


# ----- hooks ----- #


def register_query_hook(
module: Module, hook: Callable[[Module, Tensor], Optional[Tensor]]
) -> RemovableHandle:
"""
Register a hook which takes post-rope query states as an argument and
returns the modified query states or `None`

:param module: attention module to add hook to
:param hook: query hook function
"""
impl: QuantizedAttentionImpl = getattr(module, IMPL_ATTR)

def _hook(impl: QuantizedAttentionImpl, args, kwargs):
bound = inspect.signature(impl.forward).bind(*args, **kwargs)
value = hook(module, bound.arguments["query"])
if value is not None:
bound.arguments["query"] = value

return bound.args, bound.kwargs

return impl.register_forward_pre_hook(_hook, with_kwargs=True)
183 changes: 183 additions & 0 deletions src/compressed_tensors/modeling/kvcache.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,183 @@
# Copyright (c) 2021 - present / Neuralmagic, Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
from typing import Any, Callable, Dict, List, Optional, Tuple
from weakref import ReferenceType, ref

from compressed_tensors.quantization.lifecycle.forward import forward_quantize
from compressed_tensors.utils import getattr_chain
from compressed_tensors.utils.internal import InternalModule
from torch import Tensor
from torch.nn import Module
from torch.utils.hooks import RemovableHandle
from transformers import Cache, PretrainedConfig, PreTrainedModel


__all__ = [
"QuantizedKVCache",
"initialize_hooked_kv_cache",
"register_key_hook",
"register_value_hook",
"KV_CACHE_ATTR",
]


KV_CACHE_ATTR = "kv_cache"


class QuantizedKVCache(InternalModule):
"""
QuantizedKVCache module which wraps the functionality of any existing kvcache args.
Unlike transform Cache instances, this cache is a `torch.nn.Module` which can be
hooked to trigger transforms and calibration hooks.

This module works by being registered as a submodule to attention modules via
`initialize_hooked_kv_cache`, then adding a hook which replaces `past_key_values`
kwargs with this module. This module adopts the functionality of the replaced cache,
preserving caching functionality such as sliding window attention, ect.

:param attn_module: parent attention module
"""

def __init__(self, config: PretrainedConfig, attn_module: Module):
super().__init__()
self.config = config
self.attn_module = ref(attn_module) # avoid circular reference
self.past_key_values: Optional[ReferenceType[Cache]] = None

def update(self, *args, **kwargs) -> Tuple[Tensor, Tensor]:
return self(*args, **kwargs)

def forward(
self,
key_states: Tensor,
value_states: Tensor,
*args,
**kwargs,
) -> Tuple[Tensor, Tensor]:
# quantization
module = self.attn_module()
quant_args_attr = "quantization_scheme.input_activations"
quant_args = getattr_chain(module, quant_args_attr, None)
quant_enabled = getattr(module, "quantization_enabled", True)
if quant_args is not None and quant_enabled:
key_states = forward_quantize(module, key_states, "k", quant_args)
value_states = forward_quantize(module, value_states, "v", quant_args)

# original cache
if self.past_key_values is not None:
ret = self.past_key_values().update(
key_states, value_states, *args, **kwargs
)
else:
ret = (key_states, value_states)
self.past_key_values = None

return ret

def add_past_key_values(self, past_key_values: Optional[Cache]):
if past_key_values is not None:
self.past_key_values = ref(past_key_values)
else:
self.past_key_values = None


# ----- initialize ----- #


def _kv_cache_attention_hook(
module: Module, args: List[Any], kwargs: Dict[str, Any]
) -> Tuple[List[Any], Dict[str, Any]]:
"""
Hook which should be called before each quantized attention forward pass.
This hook dynamically replaces the `past_key_values` kwarg to the attention
forward function.

The original kvcache object is assigned to QuantizedKVCache().past_key_values
as a weakref to maintain original cache functionality and compute savings
"""
_past_kv_name = (
"past_key_values" # transformers#39956
if "past_key_values" in inspect.signature(module.forward).parameters
else "past_key_value"
)
past_key_values: Optional[Cache] = kwargs.get(_past_kv_name, None)

cache: QuantizedKVCache = getattr(module, KV_CACHE_ATTR)
cache.add_past_key_values(past_key_values)
kwargs[_past_kv_name] = cache

return args, kwargs


def initialize_hooked_kv_cache(model: PreTrainedModel, module: Module):
"""
Initialize a `QuantizedKVCache` instance attached to attention

:param model: parent model of attention module
:param module: attention module to initialize with
"""
if not hasattr(module, KV_CACHE_ATTR):
module.register_module(KV_CACHE_ATTR, QuantizedKVCache(model.config, module))
module.register_forward_pre_hook(_kv_cache_attention_hook, with_kwargs=True)


# ----- hooks ----- #


def register_key_hook(
module: Module, hook: Callable[[Module, Tensor], Optional[Tensor]]
) -> RemovableHandle:
"""
Register a hook which takes post-rope key states as an argument and
returns the modified key states or `None`

:param module: attention module to add hook to
:param hook: key hook function
"""
kv_cache: QuantizedKVCache = getattr(module, KV_CACHE_ATTR)

def _hook(cache: QuantizedKVCache, args, kwargs):
bound = inspect.signature(cache.forward).bind(*args, **kwargs)
value = hook(module, bound.arguments["key_states"])
if value is not None:
bound.arguments["key_states"] = value

return bound.args, bound.kwargs

return kv_cache.register_forward_pre_hook(_hook, with_kwargs=True)


def register_value_hook(
module: Module, hook: Callable[[Module, Tensor], Optional[Tensor]]
) -> RemovableHandle:
"""
Register a hook which takes value states as an argument and
returns the modified value states or `None`

:param module: attention module to add hook to
:param hook: value hook function
"""
kv_cache: QuantizedKVCache = getattr(module, KV_CACHE_ATTR)

def _hook(cache: QuantizedKVCache, args, kwargs):
bound = inspect.signature(cache.forward).bind(*args, **kwargs)
value = hook(module, bound.arguments["value_states"])
if value is not None:
bound.arguments["value_states"] = value

return bound.args, bound.kwargs

return kv_cache.register_forward_pre_hook(_hook, with_kwargs=True)
Loading