Skip to content

vincent-maillou/serinv

Repository files navigation

Serinv: Selected Inversion, factorization and solver for structured sparse matrices

codecov Code style: black

Serinv is a selected solver library for structured sparse matrices. It bundle implementations of several factorization, selected-inversion and solver routines for severals types of structured sparse matrices. It implements sequential and distributed algorithm and support GPUs backends.

Routine Naming Conventions

We have adopted a LAPACK-like naming convention for the routines. The naming convention is as follows:

Computation prefix:

P: Parallel implementation (distributed memory)

Types of matrices:

PO: Symmetric or Hermitian positive definite matrix
DD: Diagonally dominante (or block-diagonally dominante) matrix

Note:

The routines that applies to DD matrices ca be used on any general matrices, however stability and accuracy are not guaranteed. In details:

  • Strictly diagonally dominant matrices: accurate + stable.
  • Block-diagonally dominant matrices: stable, accuracy may vary.
  • General matrices: stability and accuracy are not guaranteed.

Sparsity pattern:

BT: Block-Tridiagonal
BTA: Block-Tridiagonal with Arrowhead
BB: Block-Banded
BBA: Block-Banded with Arrowhead

Note:

By convention arrowheads matrices are pointing downwards.

Operations performed:

F: Factorization
SI: Selected Inversion
S: Solve
SC: Schur-complement
SCI: Schur-complement Inversion (selected inversion of the Schur complement)

Note:

The schur-complement SC operation can conjointly perform the schur-complement of a matrix equation of the forms:

  • $AX = B$, if a rhs is provided.
  • $AXA^T = B$, if a rhs is provided and the keyword quadratric is set to True.

Others:

RS: Reduced system

Examples:

  • pobtaf: Perform the factorization of a block-tridiagonal with arrowhead, symmetric positive definite, matrix.
  • ppobtasi: Compute the selected inversion of a block-tridiagonal with arrowhead, matrix given its Cholesky factorization, using a distributed algorithm.

How to install

First, you'll need to instal the project in your current environment. You can do this by running the following commands:

# Recommended: Create a new conda environment with python version above 3.9
conda create --name serinv_env python=3.11

# Activate the created environment
conda activate serinv_env

# Move to the root of the repository
cd /path/to/serinv/

# Install the package in editable mode
pip install -e .

To use the distributed version of the algorithms, you'll need to install mpi4py and have a working MPI implementation. You can find all the relevant information on the mpi4py documentation.

To use the GPU version of the algorithms, you'll need to install CuPy. You can find all the relevant information on the CuPy documentation.

Dev-note

Erlangen @ Fau cluster

Here are some installation guidelines to install the project on the Fau; Alex and Fritz clusters. We recommend to test any development in 3 separated environments:

  • Bare: The environment without any MPI or GPU support
  • Fritz: The environment with MPI support, CPU backend
  • Alex: The environment with MPI support, GPU backend (optional: NCCL)

This ensure compatibility no matter the available backend.

# --- Alex-env ---
module load python
module load openmpi/4.1.6-nvhpc23.7-cuda
module load cuda/12.6.1

conda create -n alex
conda activate alex

CFLAGS=-noswitcherror MPICC=$(which mpicc) pip install --no-cache-dir mpi4py

salloc --partition=a40 --nodes=1 --gres=gpu:a40:1 --time 01:00:00
conda activate alex

conda install -c conda-forge cupy-core
conda install blas=*=*mkl
conda install libblas=*=*mkl
conda install numpy scipy
conda install -c conda-forge pytest pytest-mpi pytest-cov coverage black isort ruff just pre-commit matplotlib numba -y
cd /path/to/serinv/
python -m pip install -e .
# --- Fritz-env ---
module load python
module load openmpi/4.1.2-gcc11.2.0

conda create -n fritz
conda activate fritz

MPICC=$(which mpicc) pip install --no-cache-dir mpi4py

salloc -N 4 --time 01:00:00
conda activate fritz

conda install blas=*=*mkl
conda install libblas=*=*mkl
conda install numpy scipy
conda install -c conda-forge pytest pytest-mpi pytest-cov coverage black isort ruff just pre-commit matplotlib numba -y
cd /path/to/serinv/
python -m pip install -e .
# --- Bare-env ---
module load python
conda create -n bare

salloc -N 4 --time 01:00:00
conda activate bare

conda install blas=*=*mkl
conda install libblas=*=*mkl
conda install numpy scipy
conda install -c conda-forge pytest pytest-mpi pytest-cov coverage black isort ruff just pre-commit matplotlib numba -y
cd /path/to/serinv/
python -m pip install -e .

CSCS @ Daint.alps cluster

Here are some installation guidelines to install the project on the Daint.alps cluster.

  1. Pull and start the necessary uenv:
uenv image find
uenv image pull prgenv-gnu/24.11:v1
uenv start --view=modules prgenv-gnu/24.11:v1
  1. Load the necessary modules:
module load cuda
module load gcc
module load meson
module load ninja
module load nccl
module load cray-mpich
module load cmake
module load openblas
module load aws-ofi-nccl
  1. Export library PATH:
export NCCL_ROOT=/user-environment/linux-sles15-neoverse_v2/gcc-13.3.0/nccl-2.22.3-1-4j6h3ffzysukqpqbvriorrzk2lm762dd
export NCCL_LIB_DIR=$NCCL_ROOT/lib
export NCCL_INCLUDE_DIR=$NCCL_ROOT/include
export CUDA_DIR=$CUDA_HOME
export CUDA_PATH=$CUDA_HOME
export CPATH=$CUDA_HOME/include:$CPATH
export LIBRARY_PATH=$CUDA_HOME/lib64:$LIBRARY_PATH
export LD_LIBRARY_PATH=$CUDA_HOME/lib64:$LD_LIBRARY_PATH
export CPATH=$NCCL_ROOT/include:$CPATH
export LIBRARY_PATH=$NCCL_ROOT/lib:$LIBRARY_PATH
export LD_LIBRARY_PATH=$NCCL_ROOT/lib:$LD_LIBRARY_PATH
  1. Install miniconda:
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-aarch64.sh
chmod u+x Miniconda3-latest-Linux-aarch64.sh
./Miniconda3-latest-Linux-aarch64.sh
  1. Create the conda environment and install the required libraries:
conda create -n myenv
conda activate myenv

conda install python=3.12
conda install numpy scipy

MPICC=$(which mpicc) python -m pip install --no-cache-dir mpi4py
pip install cupy --no-dependencies --no-cache-dir

conda install -c conda-forge pytest pytest-mpi pytest-cov coverage black isort ruff just pre-commit matplotlib numba -y

# Test the NCCL/CuPy installation
python -c "from cupy.cuda.nccl import *"
  1. Install serinv and run the tests:
cd /path/to/serinv/
python -m pip install -e .

# Run the sequential tests.
pytest .

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •  

Languages