Skip to content
/ PTST Public

Code for safety test in "Keeping LLMs Aligned After Fine-tuning: The Crucial Role of Prompt Templates"

License

Notifications You must be signed in to change notification settings

vfleaking/PTST

Repository files navigation

PTST

Code for the safety test in "Keeping LLMs Aligned After Fine-tuning: The Crucial Role of Prompt Templates" (https://arxiv.org/abs/2402.18540)

Code for GPT Using OpenAI API

Fine-tuning

Go to the folder gpt-api and see run-gpt-gsm.sh for an example shell script to fine-tune gpt-3.5-turbo-0613 on GSM8K.

  • The code will automatically output the ids of the fine-tuning job and the fine-tuned model, and log them to WandB.
  • You can also view the training curves when the training ends on WandB.
  • See gpt-api/prompt_utils.py for all prompt templates.

Inference

Coming soon!

Code for Llama and Mistral

Inference

inference.py is a variant of Llama's inference code but with multi-gpu support.

python inference.py \
    <path-to-model>
    --peft_model <path-to-peft> \
    --prompt_file vfleaking/DirectHarm4 \
    --prompt_template_style gsm:chat:llama \
    --output <output-file> \
    --top_p 0 --freq 8
  • prompt_file: can be vfleaking/DirectHarm4, https://huggingface.co/datasets/vfleaking/GSM-Danger or data/advbench-harmful-behaviors.csv
  • prompt_template_style: See prompt_utils.py for possible options.
  • freq: the batch size

Fine-tuning

Coming soon! We are basically using Llama's fine-tuning code but we need some time to clean up the code.

Safety Test

gpt4_eval.py is a multi-thread variant of gpt4_eval.py from Qi et al. (2023). Please set your OpenAI API key before running the evaluation command:

python safety_evaluation/gpt4_eval.py --input_file question_output/example.jsonl
  • input_file: a jsonl file with each line containing the input prompt and the model response.
  • The output of the GPT-4 judge will be saved under safety_evaluation/gpt4_eval_output.

Citation Information

@article{lyu2024keeping,
  title={Keeping {LLMs} Aligned After Fine-tuning: The Crucial Role of Prompt Templates},
  author={Kaifeng Lyu and Haoyu Zhao and Xinran Gu and Dingli Yu and Anirudh Goyal and Sanjeev Arora},
  journal={arXiv preprint arXiv:2402.18540},
  year={2024}
}

About

Code for safety test in "Keeping LLMs Aligned After Fine-tuning: The Crucial Role of Prompt Templates"

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published