-
Notifications
You must be signed in to change notification settings - Fork 111
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
ONNX converter and onnxruntime based transcriber
- Loading branch information
Showing
2 changed files
with
124 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,74 @@ | ||
import sys | ||
import keras | ||
import moonshine | ||
from pathlib import Path | ||
|
||
|
||
def convert_and_store(model, input_signature, output_file): | ||
from tf2onnx.convert import from_keras | ||
import onnx | ||
|
||
onnx_model, external_storage_dict = from_keras( | ||
model, input_signature=input_signature | ||
) | ||
assert external_storage_dict is None, f"External storage for onnx not supported" | ||
onnx.save_model(onnx_model, output_file) | ||
|
||
|
||
def main(): | ||
assert ( | ||
len(sys.argv) == 3 | ||
), "Usage: convert_to_onnx.py <moonshine model name> <output directory name>" | ||
assert ( | ||
keras.config.backend() == "tensorflow" | ||
), "Should be run with the tensorflow backend" | ||
|
||
import tensorflow as tf | ||
|
||
model_name = sys.argv[1] | ||
model = moonshine.load_model(model_name) | ||
output_dir = sys.argv[2] | ||
Path(output_dir).mkdir(parents=True, exist_ok=True) | ||
|
||
convert_and_store( | ||
model.preprocessor.preprocess, | ||
input_signature=[tf.TensorSpec([None, None], dtype=tf.float32)], | ||
output_file=f"{output_dir}/preprocess.onnx", | ||
) | ||
|
||
seq_len_spec = tf.TensorSpec([1], dtype=tf.int32) | ||
|
||
convert_and_store( | ||
model.encoder.encoder, | ||
input_signature=[ | ||
tf.TensorSpec([None, None, model.dim], dtype=tf.float32), | ||
seq_len_spec, | ||
], | ||
output_file=f"{output_dir}/encode.onnx", | ||
) | ||
|
||
input_spec = tf.TensorSpec([None, None], dtype=tf.int32) | ||
context_spec = tf.TensorSpec([None, None, model.dim], dtype=tf.float32) | ||
cache_spec = [ | ||
tf.TensorSpec( | ||
[None, None, model.n_head, model.inner_dim // model.n_head], | ||
dtype=tf.float32, | ||
) | ||
for _ in range(model.dec_n_layers * 4) | ||
] | ||
|
||
convert_and_store( | ||
model.decoder.uncached_call, | ||
input_signature=[input_spec, context_spec, seq_len_spec], | ||
output_file=f"{output_dir}/uncached_decode.onnx", | ||
) | ||
|
||
convert_and_store( | ||
model.decoder.cached_call, | ||
input_signature=[input_spec, context_spec, seq_len_spec] + cache_spec, | ||
output_file=f"{output_dir}/cached_decode.onnx", | ||
) | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,50 @@ | ||
import onnxruntime | ||
import moonshine | ||
|
||
|
||
class MoonshineOnnxModel(object): | ||
def __init__(self, models_dir): | ||
self.preprocess = onnxruntime.InferenceSession(f"{models_dir}/preprocess.onnx") | ||
self.encode = onnxruntime.InferenceSession(f"{models_dir}/encode.onnx") | ||
self.uncached_decode = onnxruntime.InferenceSession( | ||
f"{models_dir}/uncached_decode.onnx" | ||
) | ||
self.cached_decode = onnxruntime.InferenceSession( | ||
f"{models_dir}/cached_decode.onnx" | ||
) | ||
self.tokenizer = moonshine.load_tokenizer() | ||
|
||
def generate(self, audio, max_len=None): | ||
audio = moonshine.load_audio(audio, return_numpy=True) | ||
if max_len is None: | ||
# max 6 tokens per second of audio | ||
max_len = int((audio.shape[-1] / 16_000) * 6) | ||
preprocessed = self.preprocess.run([], dict(args_0=audio))[0] | ||
seq_len = [preprocessed.shape[-2]] | ||
|
||
context = self.encode.run([], dict(args_0=preprocessed, args_1=seq_len))[0] | ||
inputs = [[1]] | ||
seq_len = [1] | ||
|
||
tokens = [1] | ||
logits, *cache = self.uncached_decode.run( | ||
[], dict(args_0=inputs, args_1=context, args_2=seq_len) | ||
) | ||
for i in range(max_len): | ||
next_token = logits.squeeze().argmax() | ||
tokens.extend([next_token]) | ||
if next_token == 2: | ||
break | ||
|
||
seq_len[0] += 1 | ||
inputs = [[next_token]] | ||
logits, *cache = self.cached_decode.run( | ||
[], | ||
dict( | ||
args_0=inputs, | ||
args_1=context, | ||
args_2=seq_len, | ||
**{f"args_{i+3}": x for i, x in enumerate(cache)}, | ||
), | ||
) | ||
return [tokens] |