Skip to content

[Feature] Can't load model "thuml/timer-base-84m" #3282

@ATRI-Star

Description

@ATRI-Star

from unsloth import FastModel
model, tokenizer = FastModel.from_pretrained(
"thuml/timer-base-84m",
trust_remote_code = True,
)

Unsloth: WARNING trust_remote_code is True.
Are you certain you want to do remote code execution?
==((====))== Unsloth 2025.9.1: Fast Siglip patching. Transformers: 4.56.1.
\ /| NVIDIA GeForce RTX 3060. Num GPUs = 1. Max memory: 12.0 GB. Platform: Windows.
O^O/ _/ \ Torch: 2.7.0+cu126. CUDA: 8.6. CUDA Toolkit: 12.6. Triton: 3.4.0
\ / Bfloat16 = TRUE. FA [Xformers = 0.0.30. FA2 = False]
"-____-" Free license: https://github.com/unslothai/unsloth
Unsloth: Fast downloading is enabled - ignore downloading bars which are red colored!
Unsloth: Siglip does not support SDPA - switching to fast eager.

AttributeErrorTraceback (most recent call last)
File C:\MiniForge3\envs\gpt\Lib\site-packages\transformers\dynamic_module_utils.py:719, in resolve_trust_remote_code(trust_remote_code, model_name, has_local_code, has_remote_code, error_message, upstream_repo)
718 try:
--> 719 prev_sig_handler = signal.signal(signal.SIGALRM, _raise_timeout_error)
720 signal.alarm(TIME_OUT_REMOTE_CODE)

AttributeError: module 'signal' has no attribute 'SIGALRM'

During handling of the above exception, another exception occurred:

ValueErrorTraceback (most recent call last)
Cell In[2], line 2
1 from unsloth import FastModel
----> 2 model, tokenizer = FastModel.from_pretrained(
3 "thuml/timer-base-84m",
4 trust_remote_code = True,
5 )

File C:\MiniForge3\envs\gpt\Lib\site-packages\unsloth\models\loader.py:857, in FastModel.from_pretrained(model_name, max_seq_length, dtype, load_in_4bit, load_in_8bit, full_finetuning, token, device_map, rope_scaling, fix_tokenizer, trust_remote_code, use_gradient_checkpointing, resize_model_vocab, revision, return_logits, fullgraph, use_exact_model_name, auto_model, whisper_language, whisper_task, unsloth_force_compile, *args, **kwargs)
854 if auto_model is None:
855 auto_model = AutoModelForVision2Seq if is_vlm else AutoModelForCausalLM
--> 857 model, tokenizer = FastBaseModel.from_pretrained(
858 model_name = model_name,
859 max_seq_length = max_seq_length,
860 dtype = _get_dtype(dtype),
861 load_in_4bit = load_in_4bit,
862 load_in_8bit = load_in_8bit,
863 full_finetuning = full_finetuning,
864 token = token,
865 device_map = device_map,
866 trust_remote_code = trust_remote_code,
867 revision = revision if not is_peft else None,
868 model_types = model_types,
869 tokenizer_name = tokenizer_name,
870 auto_model = auto_model,
871 use_gradient_checkpointing = use_gradient_checkpointing,
872 supports_sdpa = supports_sdpa,
873 whisper_language = whisper_language,
874 whisper_task = whisper_task,
875 *args, **kwargs,
876 )
878 if resize_model_vocab is not None:
879 model.resize_token_embeddings(resize_model_vocab)

File C:\MiniForge3\envs\gpt\Lib\site-packages\unsloth\models\vision.py:498, in FastBaseModel.from_pretrained(model_name, max_seq_length, dtype, load_in_4bit, load_in_8bit, full_finetuning, token, device_map, trust_remote_code, model_types, tokenizer_name, auto_model, use_gradient_checkpointing, supports_sdpa, whisper_language, whisper_task, **kwargs)
490 tokenizer = auto_processor.from_pretrained(
491 tokenizer_name,
492 padding_side = "right",
(...) 495 task = whisper_task,
496 )
497 else:
--> 498 tokenizer = auto_processor.from_pretrained(
499 tokenizer_name,
500 padding_side = "right",
501 token = token,
502 )
503 if hasattr(tokenizer, "tokenizer"):
504 __tokenizer = tokenizer.tokenizer

File C:\MiniForge3\envs\gpt\Lib\site-packages\transformers\models\auto\tokenization_auto.py:1078, in AutoTokenizer.from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs)
1076 config = AutoConfig.for_model(**config_dict)
1077 else:
-> 1078 config = AutoConfig.from_pretrained(
1079 pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs
1080 )
1081 config_tokenizer_class = config.tokenizer_class
1082 if hasattr(config, "auto_map") and "AutoTokenizer" in config.auto_map:

File C:\MiniForge3\envs\gpt\Lib\site-packages\transformers\models\auto\configuration_auto.py:1297, in AutoConfig.from_pretrained(cls, pretrained_model_name_or_path, **kwargs)
1295 else:
1296 upstream_repo = None
-> 1297 trust_remote_code = resolve_trust_remote_code(
1298 trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code, upstream_repo
1299 )
1301 if has_remote_code and trust_remote_code:
1302 config_class = get_class_from_dynamic_module(
1303 class_ref, pretrained_model_name_or_path, code_revision=code_revision, **kwargs
1304 )

File C:\MiniForge3\envs\gpt\Lib\site-packages\transformers\dynamic_module_utils.py:734, in resolve_trust_remote_code(trust_remote_code, model_name, has_local_code, has_remote_code, error_message, upstream_repo)
731 signal.alarm(0)
732 except Exception:
733 # OS which does not support signal.SIGALRM
--> 734 raise ValueError(
735 f"{error_message} You can inspect the repository content at https://hf.co/{model_name}.\n"
736 f"Please pass the argument trust_remote_code=True to allow custom code to be run."
737 )
738 finally:
739 if prev_sig_handler is not None:

ValueError: The repository thuml/timer-base-84m contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/thuml/timer-base-84m .
You can inspect the repository content at https://hf.co/thuml/timer-base-84m.
Please pass the argument trust_remote_code=True to allow custom code to be run.

Metadata

Metadata

Assignees

No one assigned

    Labels

    feature requestFeature request pending on roadmap

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions