-
Notifications
You must be signed in to change notification settings - Fork 9
Reverse engineering tool using bioinformatics sequence alignment algorithms
License
unmarshal/protocol-informatics
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
The Protocol Informatics Framework Written by Marshall Beddoe <[email protected]> Copyright (c) 2004 Baseline Research ---- Wired Article: https://www.wired.com/2004/10/genome-model-applied-to-software/ Overview: The Protocol Informatics project is a software framework that allows for advanced sequence and protocol stream analysis by utilizing bioinformatics algorithms. The sole purpose of this software is to identify protocol fields in unknown or poorly documented network protocol formats. The algorithms that are utilized perform comparative analysis on a series of samples to better understand the underlying structure of the otherwise random-looking data. The PI framework was designed for experimentation through the use of a widget-based component set. Requirements: Python >= 2.3.4 http://www.python.org Numerical Python http://www.stsci.edu/resources/software_hardware/numarray Pyrex http://www.cosc.canterbury.ac.nz/~greg/python/Pyrex/ Pcapy http://oss.coresecurity.com/projects/pcapy.html Pydot http://dkbza.org/pydot.html This software has been tested and works correctly under: - OpenBSD - FreeBSD - Linux - MacOSX Example usage: Analyzing the ICMP protocol ICMP is a simple fixed length protocol. Let's use the PI framework to discover the format. Step 1: Gather 100 ICMP packets using tcpdump # tcpdump -s 42 -c 100 -nl -w icmp.dump icmp Step 2: Run dump through PI prototype # ./main.py -g -p ./icmp.dump Protocol Informatics Prototype (v0.01 beta) Written by Marshall Beddoe <[email protected]> Copyright (c) 2004 Baseline Research Found 100 unique sequences in '../dumps/icmp.out' Creating distance matrix .. complete Creating phylogenetic tree .. complete Discovered 1 clusters using a weight of 1.00 Performing multiple alignment on cluster 1 .. complete Output of cluster 1 0097 x08 x00 xad x4b x05 xbe x00 x60 0039 x08 x00 x30 x54 x05 xbe x00 x26 0026 x08 x00 xf7 xb2 x05 xbe x00 x19 0015 x08 x00 x01 xdb x05 xbe x00 x0e 0048 x08 x00 x4f xdf x05 xbe x00 x2f 0040 x08 x00 xf8 xa4 x05 xbe x00 x27 0077 x08 x00 xe8 x28 x05 xbe x00 x4c 0017 x08 x00 xe8 x6c x05 xbe x00 x10 0027 x08 x00 xc3 xa9 x05 xbe x00 x1a 0087 x08 x00 xdd xc1 x05 xbe x00 x56 0081 x08 x00 x88 x42 x05 xbe x00 x50 0058 x08 x00 xb0 x42 x05 xbe x00 x39 0013 x08 x00 x3e x38 x05 xbe x00 0067 x08 x00 x99 x36 x05 xbe x00 x42 0055 x08 x00 x0f x56 x05 xbe x00 x36 0004 x08 x00 xe6 xda x05 xbe x00 x03 0028 x08 x00 x83 xd9 x05 xbe x00 x1b 0095 x08 x00 xc1 xd9 x05 xbe x00 x5e 0075 x08 x00 x3a x63 x05 xbe x00 x4a 0053 x08 x00 x6d x2a x05 xbe x00 x34 0021 x08 x00 x6d x8d x05 xbe x00 x14 0088 x08 x00 xa8 x07 x05 xbe x00 x57 0005 x08 x00 xa8 x8a x05 xbe x00 x04 0080 x08 x00 xa8 x62 x05 xbe x00 x4f 0023 x08 x00 x3f x18 x05 xbe x00 x16 0002 x08 x00 x3f x65 x05 xbe x00 x01 0074 x08 x00 x3f xc2 x05 xbe x00 x49 0030 x08 x00 x3f x15 x05 xbe x00 x1d 0044 x08 x00 xcc xc2 x05 xbe x00 x2b 0078 x08 x00 xcc x8a x05 xbe x00 x4d 0071 x08 x00 xd8 x18 x05 xbe x00 x46 0035 x08 x00 x9a xfd x05 xbe x00 x22 0001 x08 x00 x69 xf9 x05 xbe x00 x00 0034 x08 x00 xc5 x9e x05 xbe x00 x21 0031 x08 x00 x38 x00 x05 xbe x00 x1e 0092 x08 x00 x38 x4c x05 xbe x00 x5b 0100 x08 x00 x2b x1a x05 xbe x00 x63 0049 x08 x00 x15 x1d x05 xbe x00 x30 0008 x08 x00 x2f x64 x05 xbe x00 x07 0089 x08 x00 x80 xe5 x05 xbe x00 x58 0096 x08 x00 xb2 xb0 x05 xbe x00 x5f 0079 x08 x00 xc2 xae x05 xbe x00 x4e 0057 x08 x00 xc2 x79 x05 xbe x00 x38 0046 x08 x00 x77 x7a x05 xbe x00 x2d 0018 x08 x00 xbb xce x05 xbe x00 x11 0025 x08 x00 xfe xaa x05 xbe x00 x18 0068 x08 x00 x50 xe3 x05 xbe x00 x43 0065 x08 x00 xe0 xb7 x05 xbe x00 x40 0011 x08 x00 x8d xd6 x05 xbe x00 0029 x08 x00 x7c xf3 x05 xbe x00 x1c 0033 x08 x00 xef xf3 x05 xbe x00 0069 x08 x00 x25 x6b x05 xbe x00 x44 0083 x08 x00 x25 xff x05 xbe x00 x52 0099 x08 x00 x56 x99 x05 xbe x00 x62 0061 x08 x00 x33 x81 x05 xbe x00 x3c 0050 x08 x00 xe9 xba x05 xbe x00 x31 0042 x08 x00 xb3 x49 x05 xbe x00 x29 0059 x08 x00 x81 x4e x05 xbe x00 x3a 0098 x08 x00 x81 xad x05 xbe x00 x61 0091 x08 x00 x42 xa0 x05 xbe x00 x5a 0054 x08 x00 x42 xd8 x05 xbe x00 x35 0037 x08 x00 x4c xe8 x05 xbe x00 x24 0041 x08 x00 xeb x4d x05 xbe x00 x28 0086 x08 x00 xe4 x53 x05 xbe x00 x55 0006 x08 x00 x71 x7b x05 xbe x00 x05 0012 x08 x00 x63 x7b x05 xbe x00 0070 x08 x00 xee x7d x05 xbe x00 x45 0051 x08 x00 xc8 x57 x05 xbe x00 x32 0066 x08 x00 xb4 x3c x05 xbe x00 x41 0014 x08 x00 x2c x26 x05 xbe x00 0062 x08 x00 x2c x7c x05 xbe x00 x3d 0016 x08 x00 xed x8e x05 xbe x00 x0f 0007 x08 x00 x47 x3d x05 xbe x00 x06 0073 x08 x00 x5e x72 x05 xbe x00 x48 0052 x08 x00 x9e x06 x05 xbe x00 x33 0072 x08 x00 x9e x9d x05 xbe x00 x47 0036 x08 x00 x6f x6e x05 xbe x00 x23 0060 x08 x00 x6c xc6 x05 xbe x00 x3b 0045 x08 x00 xa2 xf5 x05 xbe x00 x2c 0085 x08 x00 x00 x47 x05 xbe x00 x54 0076 x08 x00 x14 x85 x05 xbe x00 x4b 0020 x08 x00 xa0 x85 x05 xbe x00 x13 0019 x08 x00 xa6 x2c x05 xbe x00 x12 0003 x08 x00 x14 x2c x05 xbe x00 x02 0022 x08 x00 x44 x8c x05 xbe x00 x15 0082 x08 x00 x5d xe0 x05 xbe x00 x51 0009 x08 x00 xfc x41 x05 xbe x00 x08 0084 x08 x00 x35 x05 xbe x00 x53 0032 x08 x00 x0e x17 x05 xbe x00 x1f 0056 x08 x00 xe5 x05 xbe x00 x37 0043 x08 x00 xa1 xde x05 xbe x00 x2a 0094 x08 x00 x03 x92 x05 xbe x00 x5d 0047 x08 x00 x55 x83 x05 xbe x00 x2e 0090 x08 x00 x55 x94 x05 xbe x00 x59 0064 x08 x00 x8f x05 xbe x00 x3f 0093 x08 x00 xb6 x05 xbe x00 x5c 0010 x08 x00 xd1 xb6 x05 xbe x00 0024 x08 x00 x11 x8f x05 xbe x00 x17 0063 x08 x00 x11 x04 x05 xbe x00 x3e 0038 x08 x00 x37 x3b x05 xbe x00 x25 DT BBB ZZZ BBB BBB BBB BBB ZZZ AAA MT 000 000 081 089 000 000 000 100 Ungapped Consensus: CONS x08 x00 x3f x18 x05 xbe x00 ??? DT BBB ZZZ BBB BBB BBB BBB ZZZ AAA MT 000 000 081 089 000 000 000 100 Step 3: Analyze Consensus Sequence Pay attention to datatype composition and mutation rate. Offset 0: Binary data, 0% mutation rate Offset 1: Zeroed data, 0% mutation rate Offset 2: Binary data, 81% mutation rate Offset 3: Binary data, 89% mutation rate Offset 4: Binary data, 0% mutation rate Offset 5: Binary data, 0% mutation rate Offset 6: Zeroed data, 0% mutation rate Offset 7: ASCII data, 100% mutation rate Using this information we can construct the structure of the format: [ 1 byte ] [ 1 byte ] [ 2 byte ] [ 2 byte ] [ 1 byte ] [ 1 byte ] The real format of an ICMP message: [ 1 byte ] [ 1 byte ] [ 2 byte ] [ 2 byte ] [ 2 byte ] The reason PI made the mistake in identifying the last field was due to the fact that the last field in an ICMP packet is a 16 bit sequence identifier. We only gathered 100 packets therefore the greatest significant byte never changed as the field incremented. Therefore, it is very important to gather data efficiently as PI is only as good as the data that is fed to it.
About
Reverse engineering tool using bioinformatics sequence alignment algorithms
Resources
License
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published