@inproceedings{Wu2021GraphTrans,
title={Representing Long-Range Context for Graph Neural Networks with Global Attention},
author={Wu, Zhanghao and Jain, Paras and Wright, Matthew and Mirhoseini, Azalia and Gonzalez, Joseph E and Stoica, Ion},
booktitle={Advances in Neural Information Processing Systems (NeurIPS)},
year={2021}
}
We release the PyTorch code for the GraphTrans [paper]
To setup the Python environment, please install conda first. All the required environments are in requirement.yml.
conda env create -f requirement.yml
To run the experiments, please refer to the commands below (taking OGBG-Code2 as an example):
# GraphTrans (GCN-Virtual)
python main.py --configs configs/code2/gnn-transformer/JK=cat/pooling=cls+norm_input.yml --runs 5
# GraphTrans (GCN)
python main.py --configs configs/code2/gnn-transformer/no-virtual/pooling=cls+norm_input.yml --runs 5
# Or to use slurm
sbatch ./slurm-run.sh ”configs/code2/gnn-transformer/JK=cat/pooling=cls+norm_input.yml --runs 5”
The config path for each dataset/model can be found in the result table below.
Dataset | Model | Valid | Test | Config |
---|---|---|---|---|
OGBG-Code2 | GraphTrans (GCN) | 0.1599±0.0009 | 0.1751±0.0015 | Config |
GraphTrans (PNA) | 0.1622±0.0025 | 0.1765±0.0033 | Config | |
GraphTrans (GCN-Virtual) | 0.1661±0.0012 | 0.1830±0.0024 | Config | |
OGBG-Molpcba | GraphTrans (GIN) | 0.2893±0.0050 | 0.2756±0.0039 | Config |
GraphTrans (GIN-Virtual) | 0.2867±0.0022 | 0.2761±0.0029 | Config | |
NCI1 | GraphTrans (small, GCN) | — | 81.3±1.9 | Config |
GraphTrans (large, GIN) | — | 82.6±1.2 | Config | |
NCI109 | GraphTrans (small, GCN) | — | 79.2±2.2 | Config |
GraphTrans (large, GIN) | — | 82.3±2.6 | Config |