Skip to content

published in IEEE Transactions on Image Processing (TIP), 2023

License

Notifications You must be signed in to change notification settings

ucas-vg/GroupSampling

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Python >=3.5 PyTorch >=1.0

Group Sampling

Rethinking Sampling Strategies for Unsupervised Person Re-identification
Xumeng Han, Xuehui Yu, Guorong Li, Jian Zhao, Gang Pan, Qixiang Ye, Jianbin Jiao and Zhenjun Han
IEEE Transactions on Image Processing (TIP) 2023 (arXiv:2107.03024)

Requirements

Installation

git clone https://github.com/wavinflaghxm/GroupSampling.git
cd GroupSampling
python setup.py develop

Prepare Datasets

cd examples && mkdir data

Download the person datasets Market-1501, DukeMTMC-reID, MSMT17. Then unzip them under the directory like:

GroupSampling/examples/data
├── market1501
│   └── Market-1501-v15.09.15
├── dukemtmc
│   └── DukeMTMC-reID
└── msmt17
    └── MSMT17_V2

Training

We utilize 1 GTX-2080TI GPU for training.

  • Use --group-n 256 for Market-1501, --group-n 128 for DukeMTMC-reID, and --group-n 1024 for MSMT17.

Market-1501:

CUDA_VISIBLE_DEVICES=0 python examples/train.py -d market1501 --logs-dir logs/market_resnet50 --group-n 256

DukeMTMC-reID:

CUDA_VISIBLE_DEVICES=0 python examples/train.py -d dukemtmc --logs-dir logs/duke_resnet50 --group-n 128

MSMT17:

CUDA_VISIBLE_DEVICES=0 python examples/train.py -d msmt17 --logs-dir logs/msmt_resnet50 --group-n 1024 --iters 800

We recommend using 4 GPUs to train MSMT17 for better performance.

CUDA_VISIBLE_DEVICES=0,1,2,3 python examples/train.py -d msmt17 --logs-dir logs/msmt_resnet50-gpu4 --group-n 1024 -b 256 --momentum 0.1 --lr 0.00005

Evaluation

To evaluate the model, run:

CUDA_VISIBLE_DEVICES=0 python examples/test.py -d $DATASET --resume $PATH

Some examples:

### Market-1501 ###
CUDA_VISIBLE_DEVICES=0 python examples/test.py -d market1501 --resume logs/market_resnet50/model_best.pth.tar

Results

results

Citation

If you find this work useful for your research, please cite:

@article{han2022rethinking,
  title={Rethinking Sampling Strategies for Unsupervised Person Re-Identification}, 
  author={Han, Xumeng and Yu, Xuehui and Li, Guorong and Zhao, Jian and Pan, Gang and Ye, Qixiang and Jiao, Jianbin and Han, Zhenjun},
  journal={IEEE Transactions on Image Processing}, 
  year={2023},
  volume={32},
  pages={29-42},
  doi={10.1109/TIP.2022.3224325}}

Acknowledgements

Codes are built upon SpCL. Thanks to Yixiao Ge for opening source.

About

published in IEEE Transactions on Image Processing (TIP), 2023

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages