Skip to content

Commit

Permalink
Logger tests and fixes (Lightning-AI#1009)
Browse files Browse the repository at this point in the history
* Refactor logger tests

* Update and add tests for wandb logger

* Update and add tests for logger bases

* Update and add tests for mlflow logger

* Improve coverage

* Updates

* Update CHANGELOG

* Updates

* Fix style

* Fix style

* Updates
  • Loading branch information
ethanwharris authored and tullie committed Apr 3, 2020
1 parent 18b5172 commit 1a185ca
Show file tree
Hide file tree
Showing 17 changed files with 767 additions and 514 deletions.
2 changes: 2 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -47,6 +47,8 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).
- Fixed a bug where the model checkpointer didn't write to the same directory as the logger ([#771](https://github.com/PyTorchLightning/pytorch-lightning/pull/771))
- Fixed a bug where the `TensorBoardLogger` class would create an additional empty log file during fitting ([#777](https://github.com/PyTorchLightning/pytorch-lightning/pull/777))
- Fixed a bug where `global_step` was advanced incorrectly when using `accumulate_grad_batches > 1` ([#832](https://github.com/PyTorchLightning/pytorch-lightning/pull/832))
- Fixed a bug when calling `self.logger.experiment` with multiple loggers ([#1009](https://github.com/PyTorchLightning/pytorch-lightning/pull/1009))
- Fixed a bug when calling `logger.append_tags` on a `NeptuneLogger` with a single tag ([#1009](https://github.com/PyTorchLightning/pytorch-lightning/pull/1009))

## [0.6.0] - 2020-01-21

Expand Down
8 changes: 2 additions & 6 deletions pytorch_lightning/loggers/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -105,7 +105,7 @@ def __getitem__(self, index: int) -> LightningLoggerBase:

@property
def experiment(self) -> List[Any]:
return [logger.experiment() for logger in self._logger_iterable]
return [logger.experiment for logger in self._logger_iterable]

def log_metrics(self, metrics: Dict[str, float], step: Optional[int] = None):
[logger.log_metrics(metrics, step) for logger in self._logger_iterable]
Expand All @@ -122,11 +122,7 @@ def finalize(self, status: str):
def close(self):
[logger.close() for logger in self._logger_iterable]

@property
def rank(self) -> int:
return self._rank

@rank.setter
@LightningLoggerBase.rank.setter
def rank(self, value: int):
self._rank = value
for logger in self._logger_iterable:
Expand Down
18 changes: 10 additions & 8 deletions pytorch_lightning/loggers/comet.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@
"""
import argparse
from logging import getLogger
from typing import Optional, Union, Dict
from typing import Optional, Dict, Union

try:
from comet_ml import Experiment as CometExperiment
Expand All @@ -20,8 +20,10 @@
# For more information, see: https://www.comet.ml/docs/python-sdk/releases/#release-300
from comet_ml.papi import API
except ImportError:
raise ImportError('Missing comet_ml package.')
raise ImportError('You want to use `comet_ml` logger which is not installed yet,'
' install it with `pip install comet-ml`.')

import torch
from torch import is_tensor

from pytorch_lightning.utilities.debugging import MisconfigurationException
Expand Down Expand Up @@ -87,11 +89,7 @@ def __init__(self, api_key: Optional[str] = None, save_dir: Optional[str] = None
self._experiment = None

# Determine online or offline mode based on which arguments were passed to CometLogger
if save_dir is not None and api_key is not None:
# If arguments are passed for both save_dir and api_key, preference is given to online mode
self.mode = "online"
self.api_key = api_key
elif api_key is not None:
if api_key is not None:
self.mode = "online"
self.api_key = api_key
elif save_dir is not None:
Expand Down Expand Up @@ -168,7 +166,11 @@ def log_hyperparams(self, params: argparse.Namespace):
self.experiment.log_parameters(vars(params))

@rank_zero_only
def log_metrics(self, metrics: Dict[str, float], step: Optional[int] = None):
def log_metrics(
self,
metrics: Dict[str, Union[torch.Tensor, float]],
step: Optional[int] = None
):
# Comet.ml expects metrics to be a dictionary of detached tensors on CPU
for key, val in metrics.items():
if is_tensor(val):
Expand Down
11 changes: 5 additions & 6 deletions pytorch_lightning/loggers/mlflow.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,7 +31,8 @@ def any_lightning_module_function_or_hook(...):
try:
import mlflow
except ImportError:
raise ImportError('Missing mlflow package.')
raise ImportError('You want to use `mlflow` logger which is not installed yet,'
' install it with `pip install mlflow`.')

from .base import LightningLoggerBase, rank_zero_only

Expand Down Expand Up @@ -79,7 +80,7 @@ def run_id(self):
if expt:
self._expt_id = expt.experiment_id
else:
logger.warning(f"Experiment with name {self.experiment_name} not found. Creating it.")
logger.warning(f'Experiment with name {self.experiment_name} not found. Creating it.')
self._expt_id = self._mlflow_client.create_experiment(name=self.experiment_name)

run = self._mlflow_client.create_run(experiment_id=self._expt_id, tags=self.tags)
Expand All @@ -96,17 +97,15 @@ def log_metrics(self, metrics: Dict[str, float], step: Optional[int] = None):
timestamp_ms = int(time() * 1000)
for k, v in metrics.items():
if isinstance(v, str):
logger.warning(
f"Discarding metric with string value {k}={v}"
)
logger.warning(f'Discarding metric with string value {k}={v}.')
continue
self.experiment.log_metric(self.run_id, k, v, timestamp_ms, step)

def save(self):
pass

@rank_zero_only
def finalize(self, status: str = "FINISHED"):
def finalize(self, status: str = 'FINISHED'):
if status == 'success':
status = 'FINISHED'
self.experiment.set_terminated(self.run_id, status)
Expand Down
52 changes: 27 additions & 25 deletions pytorch_lightning/loggers/neptune.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,11 +15,11 @@
from neptune.experiments import Experiment
except ImportError:
raise ImportError('You want to use `neptune` logger which is not installed yet,'
' please install it e.g. `pip install neptune-client`.')
' install it with `pip install neptune-client`.')

import torch
from torch import is_tensor

# from .base import LightningLoggerBase, rank_zero_only
from pytorch_lightning.loggers.base import LightningLoggerBase, rank_zero_only

logger = getLogger(__name__)
Expand Down Expand Up @@ -130,15 +130,15 @@ def any_lightning_module_function_or_hook(...):
self._kwargs = kwargs

if offline_mode:
self.mode = "offline"
self.mode = 'offline'
neptune.init(project_qualified_name='dry-run/project',
backend=neptune.OfflineBackend())
else:
self.mode = "online"
self.mode = 'online'
neptune.init(api_token=self.api_key,
project_qualified_name=self.project_name)

logger.info(f"NeptuneLogger was initialized in {self.mode} mode")
logger.info(f'NeptuneLogger was initialized in {self.mode} mode')

@property
def experiment(self) -> Experiment:
Expand Down Expand Up @@ -166,53 +166,58 @@ def experiment(self) -> Experiment:
@rank_zero_only
def log_hyperparams(self, params: argparse.Namespace):
for key, val in vars(params).items():
self.experiment.set_property(f"param__{key}", val)
self.experiment.set_property(f'param__{key}', val)

@rank_zero_only
def log_metrics(self, metrics: Dict[str, float], step: Optional[int] = None):
def log_metrics(
self,
metrics: Dict[str, Union[torch.Tensor, float]],
step: Optional[int] = None
):
"""Log metrics (numeric values) in Neptune experiments
Args:
metrics: Dictionary with metric names as keys and measured quantities as values
step: Step number at which the metrics should be recorded, must be strictly increasing
"""

for key, val in metrics.items():
if is_tensor(val):
val = val.cpu().detach()

if step is None:
self.experiment.log_metric(key, val)
else:
self.experiment.log_metric(key, x=step, y=val)
self.log_metric(key, val, step=step)

@rank_zero_only
def finalize(self, status: str):
self.experiment.stop()

@property
def name(self) -> str:
if self.mode == "offline":
return "offline-name"
if self.mode == 'offline':
return 'offline-name'
else:
return self.experiment.name

@property
def version(self) -> str:
if self.mode == "offline":
return "offline-id-1234"
if self.mode == 'offline':
return 'offline-id-1234'
else:
return self.experiment.id

@rank_zero_only
def log_metric(self, metric_name: str, metric_value: float, step: Optional[int] = None):
def log_metric(
self,
metric_name: str,
metric_value: Union[torch.Tensor, float, str],
step: Optional[int] = None
):
"""Log metrics (numeric values) in Neptune experiments
Args:
metric_name: The name of log, i.e. mse, loss, accuracy.
metric_value: The value of the log (data-point).
step: Step number at which the metrics should be recorded, must be strictly increasing
"""
if is_tensor(metric_value):
metric_value = metric_value.cpu().detach()

if step is None:
self.experiment.log_metric(metric_name, metric_value)
else:
Expand All @@ -227,10 +232,7 @@ def log_text(self, log_name: str, text: str, step: Optional[int] = None):
text: The value of the log (data-point).
step: Step number at which the metrics should be recorded, must be strictly increasing
"""
if step is None:
self.experiment.log_metric(log_name, text)
else:
self.experiment.log_metric(log_name, x=step, y=text)
self.log_metric(log_name, text, step=step)

@rank_zero_only
def log_image(self, log_name: str, image: Union[str, Any], step: Optional[int] = None):
Expand Down Expand Up @@ -277,6 +279,6 @@ def append_tags(self, tags: Union[str, Iterable[str]]):
If multiple - comma separated - str are passed, all of them are added as tags.
If list of str is passed, all elements of the list are added as tags.
"""
if not isinstance(tags, Iterable):
if str(tags) == tags:
tags = [tags] # make it as an iterable is if it is not yet
self.experiment.append_tags(*tags)
5 changes: 4 additions & 1 deletion pytorch_lightning/loggers/tensorboard.py
Original file line number Diff line number Diff line change
Expand Up @@ -44,7 +44,10 @@ class TensorBoardLogger(LightningLoggerBase):
"""
NAME_CSV_TAGS = 'meta_tags.csv'

def __init__(self, save_dir: str, name: str = "default", version: Optional[Union[int, str]] = None, **kwargs):
def __init__(
self, save_dir: str, name: Optional[str] = "default",
version: Optional[Union[int, str]] = None, **kwargs
):
super().__init__()
self.save_dir = save_dir
self._name = name
Expand Down
3 changes: 2 additions & 1 deletion pytorch_lightning/loggers/test_tube.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,8 @@
try:
from test_tube import Experiment
except ImportError:
raise ImportError('Missing test-tube package.')
raise ImportError('You want to use `test_tube` logger which is not installed yet,'
' install it with `pip install test-tube`.')

from .base import LightningLoggerBase, rank_zero_only

Expand Down
20 changes: 10 additions & 10 deletions pytorch_lightning/loggers/wandb.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,12 +9,14 @@
import os
from typing import Optional, List, Dict

import torch.nn as nn

try:
import wandb
from wandb.wandb_run import Run
except ImportError:
raise ImportError('You want to use `wandb` logger which is not installed yet,'
' please install it e.g. `pip install wandb`.')
' install it with `pip install wandb`.')

from .base import LightningLoggerBase, rank_zero_only

Expand Down Expand Up @@ -50,7 +52,7 @@ def __init__(self, name: Optional[str] = None, save_dir: Optional[str] = None,
super().__init__()
self._name = name
self._save_dir = save_dir
self._anonymous = "allow" if anonymous else None
self._anonymous = 'allow' if anonymous else None
self._id = version or id
self._tags = tags
self._project = project
Expand Down Expand Up @@ -79,27 +81,25 @@ def experiment(self) -> Run:
"""
if self._experiment is None:
if self._offline:
os.environ["WANDB_MODE"] = "dryrun"
os.environ['WANDB_MODE'] = 'dryrun'
self._experiment = wandb.init(
name=self._name, dir=self._save_dir, project=self._project, anonymous=self._anonymous,
id=self._id, resume="allow", tags=self._tags, entity=self._entity)
id=self._id, resume='allow', tags=self._tags, entity=self._entity)
return self._experiment

def watch(self, model, log="gradients", log_freq=100):
wandb.watch(model, log, log_freq)
def watch(self, model: nn.Module, log: str = 'gradients', log_freq: int = 100):
wandb.watch(model, log=log, log_freq=log_freq)

@rank_zero_only
def log_hyperparams(self, params: argparse.Namespace):
self.experiment.config.update(params)

@rank_zero_only
def log_metrics(self, metrics: Dict[str, float], step: Optional[int] = None):
metrics["global_step"] = step
if step is not None:
metrics['global_step'] = step
self.experiment.log(metrics)

def save(self):
pass

@rank_zero_only
def finalize(self, status: str = 'success'):
try:
Expand Down
Empty file added tests/loggers/__init__.py
Empty file.
Loading

0 comments on commit 1a185ca

Please sign in to comment.