Skip to content

tsynbio/TourSynbio

Repository files navigation

TourSynbioTM

OpenXLab_Model

English | 简体中文

Contents

Introduction

[TourSynbioTM] is an advanced protein language model that integrates knowledge from the field of proteins. Based on InternLM2-Chat-7B, it is fine-tuned using the Xtuner toolkit and the SFT (Supervised Fine-Tuning) dataset from ProteinLMBench. TourSynbioTM not only understands human language but also the sequences of proteins—the language of life. It seamlessly bridges the gap between specialized protein data and general language, making complex data and information easier to understand and apply. Its powerful reasoning capabilities allow it to extract valuable insights from complex data, accelerating the process of scientific discovery.

News

[2024.06.23] TourSynbioTM (SFT only) is now open source.

Usage

Quick Start

Download Model

From OpenXLab

Refer to Download Model.

pip install openxlab
from openxlab.model import download
download(model_repo=[model_link], 
         model_name=[model_link], output='./')

Local Deployment

  1. Get the project code from Github

    git clone (ourlink)
    python (start_file_name)
  2. Create and activate a virtual environment

    conda env create -f environment.yml
    conda activate (envName)
    pip install -r requirements.txt
  3. Run the demo

    streamlit run web_demo.py --server.address=0.0.0.0 --server.port=8501

XTuner Fine-tuning Guide

  • Introduction

XTuner supports fine-tuning large language models. For a dataset preprocessing guide, please refer to the documentation. For a fine-tuning guide, please refer to the documentation.

  • Step 1: Format the single round dialogue data format for XTuner, for example.

  •  [{
         "conversation":[
             {
                 "system": "xxx",
                 "input": "xxx",
                 "output": "xxx"
             }
         ]
     },
     {
         "conversation":[
             {
                 "system": "xxx",
                 "input": "xxx",
                 "output": "xxx"
             }
         ]
     }]
    
     # demo
     {
             "conversation": [
                 {
                     "system": "Please evaluate the following protein sequence and provide an explanation of the enzyme's catalytic activity, including the chemical reaction it facilitates: ",
                     "intput": "<seq> M P G R Q L T E L L T G L E E V K V Q T A M E Q K E M M I G G L T A D S R E V R P G D L F A A L P G A R V D G R D F I D Q A V G R G A D V V L A P V G T S L K D Y G R P V S L V T S D E P R R T L A Q M A A R F H G R Q P R T I A A V T G T S G K T S V A D F L R Q I W T L A D R K A A S L G T L G L I P A T A A S K A P P Y L T T P D P V A L H A C L K E V A E A G Y E H L A L E A S S H G L D Q Y R L D G L T F S A A A F T N L S Q D H L D Y H P D M E S Y L N A K A R L F G D L L P T G A T A V L N A D A P E F D R L A A L C E R R G I E V L S Y G L A G D D L R I V E A R A L P D G I A L S L R V K G Q D W Q G K L D L I G T F Q G H N V L A A L G L A L A T G L E P S V A L E A L P K L V G V P G R L Q R V A Q T V S G A Q V F V D Y A H K P G A L E A A L T A L R P H A E G R L I V V F G A G G D R D R G K R P L M G E I A T R L A D V V L V T D D N P R S E D P V A I R A E I L A A A P G A R E V S D R G G A I A A A L A E A D P G D L V L I A G K G H E T G Q I V G D K V L P F D D S E I A R R L A R G G Q V </seq>",
                     "output": "By examining the input protein sequence, the enzyme catalyzes the subsequent chemical reaction: ATP + meso-2,6-diaminoheptanedioate + UDP-N-acetyl-alpha-D-   muramoyl-L-alanyl-D-glutamate = ADP + H(+) + phosphate + UDP-N-   acetyl-alpha-D-muramoyl-L-alanyl-gamma-D-glutamyl-meso-2,6-   diaminoheptanedioate."
                 }
             ]
     }
  • Step 2: Configure the XTuner config file.

    XTuner provides multiple out of the box configuration files, which users can view through the following commands:

    xtuner list-cfg

    Alternatively, if the provided configuration file does not meet the usage requirements, please export the provided configuration file and make the corresponding changes:

    xtuner copy-cfg ${CONFIG_NAME} ${SAVE_PATH}
    vi ${SAVE_PATH}/${CONFIG_NAME}_copy.py

    To configure the config file, you can first copy the official internlm2-chat-7b config file, then rename the copied config file to internlm2-chat-7bprotein-lora. py and make the necessary modifications,

    ...
    custom_hooks = [
        dict(
            tokenizer=dict(
                padding_side='right',
                pretrained_model_name_or_path=
                '/cpfs01/shared/gmai/xtuner_workspace/internlm/internlm2-7b/', # PATH/TO/PRETRAINED MODELS
                trust_remote_code=True,
                type='transformers.AutoTokenizer.from_pretrained'),
            type='xtuner.engine.DatasetInfoHook'),
    ]
    data_path = [
        '/cpfs01/shared/gmai/xtuner_workspace/protein_data/formated_ssl_data/sll_data_0.json', # PATH/TO/DATA
        ...
    ]
    ...
    model = dict(
        llm=dict(
            pretrained_model_name_or_path=
            '/cpfs01/shared/gmai/xtuner_workspace/internlm/internlm2-7b/', # PATH/TO/PRETRAINED MODELS
            torch_dtype='torch.float16',
            trust_remote_code=True,
            type='transformers.AutoModelForCausalLM.from_pretrained'),
        lora=dict(    # LoRA
            bias='none',
            lora_alpha=16,
            lora_dropout=0.1,
            r=64,
            task_type='CAUSAL_LM',
            type='peft.LoraConfig'),
        type='xtuner.model.SupervisedFinetune')
    ...

The main changes are pretrained model path, data path, and fine-tuning method (LoRA). Other hyperparameters can be adjusted as needed. Here, we keep the defaults.

Note:

Both the SFT and SSL stages involve modifying the config file, with the same modification method. However, the input in SSL data is empty during data construction. For detailed pretrained data construction, see the documentation.

  • Step 3: Start fine-tuning.
xtuner train internlm2_7b_protein_lora

For example, you can fine-tune InternLM2-Chat-7B on the protein dataset using the LoRA algorithm:

# Single GPU
xtuner train internlm2_7b_protein_lora --deepspeed deepspeed_zero2
# Multiple GPUs
(DIST) NPROC_PER_NODE=${GPU_NUM} xtuner train internlm2_7b_protein_lora --deepspeed deepspeed_zero2
(SLURM) srun ${SRUN_ARGS} xtuner train internlm2_7b_protein_lora --launcher slurm --deepspeed deepspeed_zero2
  • --deepspeed indicates using DeepSpeed 🚀 to optimize the training process. XTuner includes multiple strategies, including ZeRO-1, ZeRO-2, and ZeRO-3. If you wish to disable this feature, simply remove this parameter.

  • For more examples, please refer to the documentation.

  • Step 4: Convert the saved PTH model (if using DeepSpeed, it will be a folder) to a HuggingFace model:

xtuner convert pth_to_hf ${CONFIG_NAME_OR_PATH} ${PTH} ${SAVE_PATH}

Open Source License

This project is licensed under the Apache License 2.0.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages