Skip to content

tsinghua-fib-lab/WorldCommuting-OD

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Global Commuting Origin-Destination Flow Dataset

This dataset contains commuting Origin-Destination (OD) flow data spanning 6 continents, 179 countries, and 1,625 cities worldwide, providing unprecedented coverage of urban dynamics across diverse urban environments.

Dataset Applications

This dataset supports research across multiple Sustainable Development Goals (SDGs):

  1. Urban Planning (SDG-11)

    • Identify inefficient long-distance travel patterns
    • Optimize zone allocation
    • Reduce travel costs
  2. Urban Resilience (SDGs-9,11)

    • Identify critical commuting corridors
    • Determine vulnerable urban areas
    • Develop targeted resilience strategies
  3. Transportation (SDG-9)

    • Travel demand modeling
    • Traffic simulation
    • Infrastructure load analysis
    • Congestion mitigation strategies
  4. Public Health (SDG-3)

    • Identify high-risk transmission routes
    • Determine crowded workplace regions
    • Support epidemic control strategies
  5. Energy Use (SDG-7) and Environmental Protection (SDG-13)

    • Evaluate and manage energy demands
    • Reduce carbon emissions
    • Assess environmental impact

Details about the dataset and its applications can be found in the dataset paper.

Project Structure

The dataset is organized into two main directories:

.
├── CityAndRegionSplit/        # City and region division data
│   ├── 0_AU_Birdum/
│   │   ├── regions.cpg        # Character encoding for attribute data
│   │   ├── regions.dbf        # Attribute data for each shape
│   │   ├── regions.prj        # Coordinate system information
│   │   ├── regions.shp        # Main file containing geometry data
│   │   ├── regions.shx        # Index file for geometry data
│   │   └── regions.png        # Visualization of the city division
│   └── ...                    # Other cities
│
└── CommutingODFlows/          # Generated commuting OD flow data
    ├── 0_AU_Birdum/
    │   ├── generation.npy     # OD flow matrix in numpy format
    │   └── generation.png     # OD flow visualization
    └── ...                    # Other cities

Usage Note

  1. CityAndRegionSplit/

    • Using ArcGIS or QGIS to open the regions.shp file.
    • Using Python to read the regions.shp file via geopandas or shapely.
      • import geopandas as gpd
        gdf = gpd.read_file('CityAndRegionSplit/0_AU_Birdum/regions.shp')
  2. CommutingODFlows/

    • Construct lines between the origin and destination regions based on the generation.npy file in ArcGIS or QGIS
    • Using Python to read the generation.npy file via numpy.
      • import numpy as np
        flows = np.load('CommutingODFlows/0_AU_Birdum/generation.npy')

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published