-
Notifications
You must be signed in to change notification settings - Fork 450
[Doc] Optimize the quickstart guide for clarity and not just for CUDA #858
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from all commits
Commits
Show all changes
2 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change | ||||
|---|---|---|---|---|---|---|
|
|
@@ -123,35 +123,24 @@ Below is an example that demonstrates more advanced features: layout annotation, | |||||
| ```python | ||||||
| import tilelang | ||||||
| import tilelang.language as T | ||||||
| # `make_mma_swizzle_layout` is a python defined layout function | ||||||
| # specifically designed for for MMA operations | ||||||
| # which ensures the consistency with the nvidia CUTLASS Library. | ||||||
| # to avoid bank conflicts and maximize the performance. | ||||||
| from tilelang.intrinsics import ( | ||||||
| make_mma_swizzle_layout as make_swizzle_layout,) | ||||||
|
|
||||||
| # add decorator @tilelang.jit if you want to return a torch function | ||||||
| # @tilelang.jit | ||||||
|
|
||||||
| # @tilelang.jit(target="cuda") | ||||||
| # target currently can be "cuda" or "hip" or "cpu". | ||||||
| # if not specified, it will be inferred from the input tensors during compile time | ||||||
| @tilelang.jit | ||||||
| def matmul(M, N, K, block_M, block_N, block_K, dtype="float16", accum_dtype="float"): | ||||||
|
|
||||||
| @T.prim_func | ||||||
| def main( | ||||||
| A: T.Tensor((M, K), dtype), | ||||||
| B: T.Tensor((K, N), dtype), | ||||||
| C: T.Tensor((M, N), dtype), | ||||||
| def matmul_relu_kernel( | ||||||
| A: T.Tensor((M, K), dtype), | ||||||
| B: T.Tensor((K, N), dtype), | ||||||
| C: T.Tensor((M, N), dtype), | ||||||
| ): | ||||||
| # Initialize Kernel Context | ||||||
| with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=128) as (bx, by): | ||||||
| A_shared = T.alloc_shared((block_M, block_K), dtype) | ||||||
| B_shared = T.alloc_shared((block_K, block_N), dtype) | ||||||
| C_local = T.alloc_fragment((block_M, block_N), accum_dtype) | ||||||
|
|
||||||
| # Apply layout optimizations or define your own layout (Optional) | ||||||
| # If not specified, we will deduce the layout automatically | ||||||
| # T.annotate_layout({ | ||||||
| # A_shared: make_swizzle_layout(A_shared), | ||||||
| # B_shared: make_swizzle_layout(B_shared), | ||||||
| # }) | ||||||
| C_local = T.alloc_fragment((block_M, block_N), accum_dtype) | ||||||
|
|
||||||
| # Enable rasterization for better L2 cache locality (Optional) | ||||||
| # T.use_swizzle(panel_size=10, enable=True) | ||||||
|
|
@@ -164,53 +153,58 @@ def matmul(M, N, K, block_M, block_N, block_K, dtype="float16", accum_dtype="flo | |||||
| # This is a sugar syntax for parallelized copy | ||||||
| T.copy(A[by * block_M, ko * block_K], A_shared) | ||||||
|
|
||||||
| # Demonstrate parallelized copy from global to shared for B | ||||||
| for k, j in T.Parallel(block_K, block_N): | ||||||
| B_shared[k, j] = B[ko * block_K + k, bx * block_N + j] | ||||||
| # Copy tile of B | ||||||
| T.copy(B[ko * block_K, bx * block_N], B_shared) | ||||||
|
|
||||||
| # Perform a tile-level GEMM on the shared buffers | ||||||
| # Currently we dispatch to the cute/hip on Nvidia/AMD GPUs | ||||||
| T.gemm(A_shared, B_shared, C_local) | ||||||
|
|
||||||
| # relu | ||||||
| for i, j in T.Parallel(block_M, block_N): | ||||||
| C_local[i, j] = T.max(C_local[i, j], 0) | ||||||
|
|
||||||
| # Copy result back to global memory | ||||||
| T.copy(C_local, C[by * block_M, bx * block_N]) | ||||||
|
|
||||||
| return main | ||||||
| return matmul_relu_kernel | ||||||
|
|
||||||
|
|
||||||
| # 1. Define the kernel (matmul) with the desired dimensions | ||||||
| func = matmul(1024, 1024, 1024, 128, 128, 32) | ||||||
| M = 1024 # M = T.symbolic("m") if you want to use dynamic shape | ||||||
| N = 1024 | ||||||
| K = 1024 | ||||||
| block_M = 128 | ||||||
| block_N = 128 | ||||||
| block_K = 32 | ||||||
|
|
||||||
| # 2. Compile the kernel into a torch function | ||||||
| # out_idx specifies the index of the output buffer in the argument list | ||||||
| # if out_idx is specified, the tensor will be created during runtime | ||||||
| # target currently can be "cuda" or "hip" or "cpu". | ||||||
| jit_kernel = tilelang.compile(func, out_idx=[2], target="cuda") | ||||||
| # 1. Define the kernel (matmul) and compile/lower it into an executable module | ||||||
| matmul_relu_kernel = matmul(M, N, K, block_M, block_N, block_K) | ||||||
|
|
||||||
| # 3. Test the kernel in Python with PyTorch data | ||||||
| import torch | ||||||
|
|
||||||
| # Create random input tensors on the GPU | ||||||
| a = torch.randn(1024, 1024, device="cuda", dtype=torch.float16) | ||||||
| b = torch.randn(1024, 1024, device="cuda", dtype=torch.float16) | ||||||
|
|
||||||
| a = torch.randn(M, K, device="cuda", dtype=torch.float16) | ||||||
| b = torch.randn(K, N, device="cuda", dtype=torch.float16) | ||||||
| c = torch.empty(M, N, device="cuda", dtype=torch.float16) | ||||||
|
|
||||||
| # Run the kernel through the JIT-compiled function | ||||||
| c = jit_kernel(a, b) | ||||||
| # Run the kernel through the Profiler | ||||||
| matmul_relu_kernel(a, b, c) | ||||||
|
|
||||||
| print(c) | ||||||
| # Reference multiplication using PyTorch | ||||||
| ref_c = a @ b | ||||||
| ref_c = torch.relu(a @ b) | ||||||
|
|
||||||
| # Validate correctness | ||||||
| torch.testing.assert_close(c, ref_c, rtol=1e-2, atol=1e-2) | ||||||
| print("Kernel output matches PyTorch reference.") | ||||||
|
|
||||||
| # 4. Retrieve and inspect the generated CUDA source (optional) | ||||||
| cuda_source = jit_kernel.get_kernel_source() | ||||||
| print("Generated CUDA kernel:\n", cuda_source) | ||||||
| # cuda_source = jit_kernel.get_kernel_source() | ||||||
|
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. The variable
Suggested change
|
||||||
| # print("Generated CUDA kernel:\n", cuda_source) | ||||||
|
|
||||||
| # 5.Pofile latency with the profiler | ||||||
| profiler = jit_kernel.get_profiler() | ||||||
| # 5.Profile latency with kernel | ||||||
| profiler = matmul_relu_kernel.get_profiler(tensor_supply_type=tilelang.TensorSupplyType.Normal) | ||||||
|
|
||||||
| latency = profiler.do_bench() | ||||||
|
|
||||||
|
|
||||||
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
The numbering of steps in the guide has a gap, jumping from step 1 to 3. To avoid confusion for new users, this should be corrected to step 2.