Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
25 changes: 25 additions & 0 deletions src/op/builtin.cc
Original file line number Diff line number Diff line change
Expand Up @@ -341,5 +341,30 @@ TIR_DEFINE_TL_BUILTIN(tcgen05_mma_arrive)
.set_attr<TCallEffectKind>("TCallEffectKind",
Integer(CallEffectKind::kOpaque));

TIR_DEFINE_TL_BUILTIN(warp_reduce_sum)
.set_num_inputs(1)
.set_attr<TCallEffectKind>("TCallEffectKind",
Integer(CallEffectKind::kOpaque));

TIR_DEFINE_TL_BUILTIN(warp_reduce_max)
.set_num_inputs(1)
.set_attr<TCallEffectKind>("TCallEffectKind",
Integer(CallEffectKind::kOpaque));

TIR_DEFINE_TL_BUILTIN(warp_reduce_min)
.set_num_inputs(1)
.set_attr<TCallEffectKind>("TCallEffectKind",
Integer(CallEffectKind::kOpaque));

TIR_DEFINE_TL_BUILTIN(warp_reduce_bitand)
.set_num_inputs(1)
.set_attr<TCallEffectKind>("TCallEffectKind",
Integer(CallEffectKind::kOpaque));

TIR_DEFINE_TL_BUILTIN(warp_reduce_bitor)
.set_num_inputs(1)
.set_attr<TCallEffectKind>("TCallEffectKind",
Integer(CallEffectKind::kOpaque));

} // namespace tl
} // namespace tvm
25 changes: 25 additions & 0 deletions src/op/builtin.h
Original file line number Diff line number Diff line change
Expand Up @@ -571,6 +571,31 @@ TVM_DLL const Op &device_assert();
*/
TVM_DLL const Op &device_assert_with_msg();

/*!
* \brief tilelang intrinsic for warp reduction sum.
*/
TVM_DLL const Op &warp_reduce_sum();

/*!
* \brief tilelang intrinsic for warp reduction max.
*/
TVM_DLL const Op &warp_reduce_max();

/*!
* \brief tilelang intrinsic for warp reduction min.
*/
TVM_DLL const Op &warp_reduce_min();

/*!
* \brief tilelang intrinsic for warp reduction bitand.
*/
TVM_DLL const Op &warp_reduce_bitand();

/*!
* \brief tilelang intrinsic for warp reduction bitor.
*/
TVM_DLL const Op &warp_reduce_bitor();

} // namespace tl
} // namespace tvm

Expand Down
10 changes: 10 additions & 0 deletions src/target/codegen_cuda.cc
Original file line number Diff line number Diff line change
Expand Up @@ -2609,6 +2609,16 @@ void CodeGenTileLangCUDA::VisitExpr_(const CallNode *op, std::ostream &os) {
std::string func_name = math_func(op->dtype, "fdiv", rounding_mode);
os << func_name << "(" << PrintExpr(op->args[0]) << ", "
<< PrintExpr(op->args[1]) << ")";
} else if (op->op.same_as(tl::warp_reduce_sum())) {
os << "tl::warp_reduce_sum(" << PrintExpr(op->args[0]) << ")";
} else if (op->op.same_as(tl::warp_reduce_max())) {
os << "tl::warp_reduce_max(" << PrintExpr(op->args[0]) << ")";
} else if (op->op.same_as(tl::warp_reduce_min())) {
os << "tl::warp_reduce_min(" << PrintExpr(op->args[0]) << ")";
} else if (op->op.same_as(tl::warp_reduce_bitand())) {
os << "tl::warp_reduce_bitand(" << PrintExpr(op->args[0]) << ")";
} else if (op->op.same_as(tl::warp_reduce_bitor())) {
os << "tl::warp_reduce_bitor(" << PrintExpr(op->args[0]) << ")";
} else {
CodeGenC::VisitExpr_(op, os);
}
Expand Down
31 changes: 31 additions & 0 deletions src/tl_templates/cuda/reduce.h
Original file line number Diff line number Diff line change
Expand Up @@ -250,4 +250,35 @@ template <int threads, int Axis = 0, bool reverse = false> struct CumSum2D {
}
};

template <typename T, typename ReduceOp>
TL_DEVICE T warp_reduce(T value, ReduceOp op) {
constexpr uint32_t mask = 0xffffffff;
value = op(value, __shfl_xor_sync(mask, value, 16));
value = op(value, __shfl_xor_sync(mask, value, 8));
value = op(value, __shfl_xor_sync(mask, value, 4));
value = op(value, __shfl_xor_sync(mask, value, 2));
value = op(value, __shfl_xor_sync(mask, value, 1));
return value;
}

template <typename T> TL_DEVICE T warp_reduce_sum(T value) {
return warp_reduce<T>(value, SumOp());
}

template <typename T> TL_DEVICE T warp_reduce_max(T value) {
return warp_reduce<T>(value, MaxOp());
}

template <typename T> TL_DEVICE T warp_reduce_min(T value) {
return warp_reduce<T>(value, MinOp());
}

template <typename T> TL_DEVICE T warp_reduce_bitand(T value) {
return warp_reduce<T>(value, BitAndOp());
}

template <typename T> TL_DEVICE T warp_reduce_bitor(T value) {
return warp_reduce<T>(value, BitOrOp());
}

} // namespace tl
83 changes: 83 additions & 0 deletions testing/python/language/test_tilelang_language_warp_reduce.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,83 @@
import torch

import tilelang
import tilelang.testing
import tilelang.language as T


@tilelang.jit
def get_kernel(reduce_op: str, dtype: str):

assert reduce_op in ["sum", "max", "min", "bitand", "bitor"]

@T.prim_func
def main(x: T.Tensor((32), dtype)):
with T.Kernel(1, threads=32):
tx = T.get_thread_binding(0)
local_val = T.alloc_local([1], dtype)
local_val[0] = x[tx]
reduced_val = T.alloc_local([1], dtype)
if reduce_op == "sum":
reduced_val[0] = T.warp_reduce_sum(local_val[0])
elif reduce_op == "max":
reduced_val[0] = T.warp_reduce_max(local_val[0])
elif reduce_op == "min":
reduced_val[0] = T.warp_reduce_min(local_val[0])
elif reduce_op == "bitand":
reduced_val[0] = T.warp_reduce_bitand(local_val[0])
elif reduce_op == "bitor":
reduced_val[0] = T.warp_reduce_bitor(local_val[0])
x[tx] = reduced_val[0]

return main


def test_warp_reduce_sum():
a = torch.randn((32,), dtype=torch.float32, device='cuda')
kernel = get_kernel('sum', 'float32')
ref = torch.full_like(a, a.sum())
kernel(a)
torch.testing.assert_close(a, ref)


def test_warp_reduce_max():
a = torch.randn((32,), dtype=torch.float32, device='cuda')
kernel = get_kernel("max", 'float32')
print(kernel.get_kernel_source())
ref = torch.full_like(a, a.max())
kernel(a)
torch.testing.assert_close(a, ref)


def test_warp_reduce_min():
a = torch.randn((32,), dtype=torch.float32, device='cuda')
kernel = get_kernel("min", 'float32')
ref = torch.full_like(a, a.min())
kernel(a)
torch.testing.assert_close(a, ref)


def test_warp_reduce_bitand():
a = torch.randint(0, 100, size=(32,), dtype=torch.int32, device='cuda')
kernel = get_kernel("bitand", 'int32')
ref_val = a[0]
for i in range(1, a.shape[0]):
ref_val = ref_val & a[i]
ref = torch.full_like(a, ref_val)
kernel(a)
torch.testing.assert_close(a, ref)


def test_warp_reduce_bitor():
a = torch.randint(0, 100, size=(32,), dtype=torch.int32, device='cuda')
kernel = get_kernel("bitor", 'int32')
ref_val = a[0]
for i in range(1, a.shape[0]):
ref_val = ref_val | a[i]
ref = torch.full_like(a, ref_val)
kernel(a)
torch.testing.assert_close(a, ref)


if __name__ == "__main__":
tilelang.testing.main()
5 changes: 5 additions & 0 deletions tilelang/language/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -65,6 +65,11 @@
reduce_bitxor, # noqa: F401
cumsum, # noqa: F401
finalize_reducer, # noqa: F401
warp_reduce_sum, # noqa: F401
warp_reduce_max, # noqa: F401
warp_reduce_min, # noqa: F401
warp_reduce_bitand, # noqa: F401
warp_reduce_bitor, # noqa: F401
)
from .print import print, device_assert # noqa: F401
from .customize import (
Expand Down
80 changes: 80 additions & 0 deletions tilelang/language/reduce.py
Original file line number Diff line number Diff line change
Expand Up @@ -325,3 +325,83 @@ def finalize_reducer(reducer: tir.Buffer):
tir.op.Op.get("tl.finalize_reducer"),
reducer.access_ptr("w"),
)


def warp_reduce_sum(value: tir.PrimExpr):
"""Perform warp reduction sum on a register value.

This function reduces a value across all threads in a warp using shuffle operations.
Each thread provides a register `value`, and after the reduction, all threads
will have the sum of all values across the warp.

Args:
value (tir.PrimExpr): The input register value to reduce

Returns:
tir.PrimExpr: The reduced sum value (same on all threads in the warp)
"""
return tir.call_intrin(value.dtype, tir.op.Op.get("tl.warp_reduce_sum"), value)


def warp_reduce_max(value: tir.PrimExpr):
"""Perform warp reduction max on a register value.

This function reduces a value across all threads in a warp using shuffle operations.
Each thread provides a register `value`, and after the reduction, all threads
will have the max of all values across the warp.

Args:
value (tir.PrimExpr): The input register value to reduce

Returns:
tir.PrimExpr: The reduced max value (same on all threads in the warp)
"""
return tir.call_intrin(value.dtype, tir.op.Op.get("tl.warp_reduce_max"), value)


def warp_reduce_min(value: tir.PrimExpr):
"""Perform warp reduction min on a register value.

This function reduces a value across all threads in a warp using shuffle operations.
Each thread provides a register `value`, and after the reduction, all threads
will have the min of all values across the warp.

Args:
value (tir.PrimExpr): The input register value to reduce

Returns:
tir.PrimExpr: The reduced min value (same on all threads in the warp)
"""
return tir.call_intrin(value.dtype, tir.op.Op.get("tl.warp_reduce_min"), value)


def warp_reduce_bitand(value: tir.PrimExpr):
"""Perform warp reduction bitwise-and on a register value.

This function reduces a value across all threads in a warp using shuffle operations.
Each thread provides a register `value`, and after the reduction, all threads
will have the bitwise-and of all values across the warp.

Args:
value (tir.PrimExpr): The input register value to reduce

Returns:
tir.PrimExpr: The reduced bitwise-and value (same on all threads in the warp)
"""
return tir.call_intrin(value.dtype, tir.op.Op.get("tl.warp_reduce_bitand"), value)


def warp_reduce_bitor(value: tir.PrimExpr):
"""Perform warp reduction bitwise-or on a register value.

This function reduces a value across all threads in a warp using shuffle operations.
Each thread provides a register `value`, and after the reduction, all threads
will have the bitwise-or of all values across the warp.

Args:
value (tir.PrimExpr): The input register value to reduce

Returns:
tir.PrimExpr: The reduced bitwise-or value (same on all threads in the warp)
"""
return tir.call_intrin(value.dtype, tir.op.Op.get("tl.warp_reduce_bitor"), value)
Loading