Skip to content

thirakawa/SVM-MRFSegmentation

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SVM-MRF segmentation

This repository includes SVM-MRF segmentation [1]. Negative log values of posterior probabilities obtained from SVM classifier is used for data terms of MRF model. For pairwise term, we used constant values range (0, 1) in order to make a segmentation result smooth.

Execution enviroment

  • Language: Python 2.7 (Anaconda 2.4.*)
  • Modules: Numpy, OpenCV, scikit-learn, PyMaxFlow

Usage

Paramters

All of paramters and directory for dataset are detenoed in settings.py.

Execution

$ sh run.sh

To clean cache (intermidiate) files,

$ sh run.sh clean

References

  1. T. Hirakawa, T. Tamaki, B. Raytchev, K. Kaneda, T. Koide, Y. Kominami, S. Yoshida, S. Tanaka, "SVM-MRF segmentation of colorectal NBI endoscopic images," In Proc. of the IEEE International Conference of Engineering in Medicine and Biology Society (EMBC2014), pp.4739-4742, (Aug. 2014).

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published