Skip to content

thierrymoudiki/glmnetforpython

Repository files navigation

Glmnet for python

PyPI PyPI - License Downloads

Install

Using pip

pip install glmnetforpython

From GitHub

pip install git+github.com/thierrymouidiki/glmnetforpython.git

What?

This is a python version of the popular glmnet library (scikit-learn style). Glmnet fits the entire lasso or elastic-net regularization path for linear regression, logistic and multinomial regression models, poisson regression and the cox model.

The underlying fortran codes are the same as the R version, and uses a cyclical path-wise coordinate descent algorithm as described in the papers linked below.

Currently, glmnet library methods for gaussian, multi-variate gaussian, binomial, multinomial, poisson and cox models are implemented for both normal and sparse matrices.

Additionally, cross-validation is also implemented for gaussian, multivariate gaussian, binomial, multinomial and poisson models. CV for cox models is yet to be implemented.

Usage

See:

References:

  • Friedman, J., Hastie, T. and Tibshirani, R. (2008) Regularization Paths for Generalized Linear Models via Coordinate Descent, http://www.jstatsoft.org/v33/i01/ Journal of Statistical Software, Vol. 33(1), 1-22 Feb 2010

  • Simon, N., Friedman, J., Hastie, T., Tibshirani, R. (2011) Regularization Paths for Cox's Proportional Hazards Model via Coordinate Descent, http://www.jstatsoft.org/v39/i05/ Journal of Statistical Software, Vol. 39(5) 1-13

  • Tibshirani, Robert., Bien, J., Friedman, J.,Hastie, T.,Simon, N.,Taylor, J. and Tibshirani, Ryan. (2010) Strong Rules for Discarding Predictors in Lasso-type Problems, http://www-stat.stanford.edu/~tibs/ftp/strong.pdf Stanford Statistics Technical Report

License:

This software is released under GNU General Public License v3.0 or later.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Sponsor this project

 

Packages

No packages published

Languages