-
Notifications
You must be signed in to change notification settings - Fork 16
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Mark all TTIR and TTNN ops as pure #1481
Merged
Merged
Changes from all commits
Commits
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -6,6 +6,7 @@ | |
#define TTMLIR_TTMLIR_DIALECT_TTNN_TTNNDIALECT_TD | ||
|
||
include "mlir/IR/OpBase.td" | ||
include "mlir/Interfaces/SideEffectInterfaces.td" | ||
include "ttmlir/Dialect/TTNN/IR/TTNNOpModelInterface.td" | ||
include "ttmlir/Dialect/TTNN/IR/TTNNWorkaroundInterface.td" | ||
|
||
|
@@ -45,6 +46,6 @@ def TTNN_Dialect : Dialect { | |
//===----------------------------------------------------------------------===// | ||
|
||
class TTNN_Op<string mnemonic, list<Trait> traits = []> : | ||
Op<TTNN_Dialect, mnemonic, !listconcat(traits, [TTNN_OpModelInterface, TTNN_WorkaroundInterface])>; | ||
Op<TTNN_Dialect, mnemonic, !listconcat(traits, [Pure, TTNN_OpModelInterface, TTNN_WorkaroundInterface])>; | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Same as above. |
||
|
||
#endif |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
22 changes: 22 additions & 0 deletions
22
test/ttmlir/Dialect/TTIR/test_remove_dead_values_pass.mlir
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,22 @@ | ||
// RUN: ttmlir-opt --remove-dead-values %s | FileCheck %s | ||
#any_device = #tt.operand_constraint<dram|l1|scalar|tile|any_device|any_device_tile> | ||
module attributes {} { | ||
func.func @forward(%arg0: tensor<64x128xf32>, %arg1: tensor<64x128xf32>) -> tensor<64x128xf32> { | ||
%0 = tensor.empty() : tensor<64x128xf32> | ||
// CHECK: %[[C:.*]] = "ttir.multiply"[[C:.*]] | ||
%1 = "ttir.multiply"(%arg0, %arg1, %0) <{operandSegmentSizes = array<i32: 2, 1>, operand_constraints = [#any_device, #any_device, #any_device]}> : (tensor<64x128xf32>, tensor<64x128xf32>, tensor<64x128xf32>) -> tensor<64x128xf32> | ||
%2 = tensor.empty() : tensor<64x128xf32> | ||
// CHECK-NOT: %[[C:.*]] = "ttir.add"[[C:.*]] | ||
%3 = "ttir.add"(%arg0, %arg1, %2) <{operandSegmentSizes = array<i32: 2, 1>, operand_constraints = [#any_device, #any_device, #any_device]}> : (tensor<64x128xf32>, tensor<64x128xf32>, tensor<64x128xf32>) -> tensor<64x128xf32> | ||
%4 = tensor.empty() : tensor<64x128xf32> | ||
// CHECK-NOT: %[[C:.*]] = "ttir.subtract"[[C:.*]] | ||
%5 = "ttir.subtract"(%arg0, %arg1, %4) <{operandSegmentSizes = array<i32: 2, 1>, operand_constraints = [#any_device, #any_device, #any_device]}> : (tensor<64x128xf32>, tensor<64x128xf32>, tensor<64x128xf32>) -> tensor<64x128xf32> | ||
%6 = tensor.empty() : tensor<64x128xf32> | ||
// CHECK-NOT: %[[C:.*]] = "ttir.div"[[C:.*]] | ||
%7 = "ttir.div"(%arg0, %arg1, %6) <{operandSegmentSizes = array<i32: 2, 1>, operand_constraints = [#any_device, #any_device, #any_device]}> : (tensor<64x128xf32>, tensor<64x128xf32>, tensor<64x128xf32>) -> tensor<64x128xf32> | ||
%8 = tensor.empty() : tensor<64x128xf32> | ||
// CHECK-NOT: %[[C:.*]] = "ttir.eq"[[C:.*]] | ||
%9 = "ttir.eq"(%arg0, %arg1, %8) <{operandSegmentSizes = array<i32: 2, 1>, operand_constraints = [#any_device, #any_device, #any_device]}> : (tensor<64x128xf32>, tensor<64x128xf32>, tensor<64x128xf32>) -> tensor<64x128xf32> | ||
return %1 : tensor<64x128xf32> | ||
} | ||
} |
77 changes: 77 additions & 0 deletions
77
test/ttmlir/Dialect/TTNN/test_remove_dead_values_pass.mlir
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,77 @@ | ||
// RUN: ttmlir-opt --remove-dead-values %s | FileCheck %s | ||
#device = #tt.device<workerGrid = #tt.grid<8x8, (d0, d1) -> (0, d0, d1)>, l1Map = (d0, d1)[s0, s1] -> (0, d0 floordiv s0, d1 floordiv s1, (d0 mod s0) * s1 + d1 mod s1), dramMap = (d0, d1)[s0, s1] -> (0, 0, ((((d0 floordiv s0) * 8 + d1 floordiv s1) * (s1 * s0) + (d0 mod s0) * s1 + d1 mod s1) floordiv 8192) mod 12, (((d0 floordiv s0) * 8 + d1 floordiv s1) * (s1 * s0) + (d0 mod s0) * s1 + d1 mod s1) floordiv 98304 + (((d0 floordiv s0) * 8 + d1 floordiv s1) * (s1 * s0) + (d0 mod s0) * s1 + d1 mod s1) mod 8192), meshShape = , chipIds = [0]> | ||
#dram = #ttnn.buffer_type<dram> | ||
#system_desc = #tt.system_desc<[{role = host, target_triple = "x86_64-pc-linux-gnu"}], [{arch = <wormhole_b0>, grid = 8x8, l1_size = 1499136, num_dram_channels = 12, dram_channel_size = 1073741824, noc_l1_address_align_bytes = 16, pcie_address_align_bytes = 32, noc_dram_address_align_bytes = 32, l1_unreserved_base = 1024, erisc_l1_unreserved_base = 1024, dram_unreserved_base = 1024, dram_unreserved_end = 1073741824, physical_cores = {worker = [ 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 1x0, 1x1, 1x2, 1x3, 1x4, 1x5, 1x6, 1x7, 2x0, 2x1, 2x2, 2x3, 2x4, 2x5, 2x6, 2x7, 3x0, 3x1, 3x2, 3x3, 3x4, 3x5, 3x6, 3x7, 4x0, 4x1, 4x2, 4x3, 4x4, 4x5, 4x6, 4x7, 5x0, 5x1, 5x2, 5x3, 5x4, 5x5, 5x6, 5x7, 6x0, 6x1, 6x2, 6x3, 6x4, 6x5, 6x6, 6x7, 7x0, 7x1, 7x2, 7x3, 7x4, 7x5, 7x6, 7x7] dram = [ 8x0, 9x0, 10x0, 8x1, 9x1, 10x1, 8x2, 9x2, 10x2, 8x3, 9x3, 10x3]}, supported_data_types = [<f32>, <f16>, <bf16>, <bfp_f8>, <bfp_bf8>, <bfp_f4>, <bfp_bf4>, <bfp_f2>, <bfp_bf2>, <u32>, <u16>, <u8>], supported_tile_sizes = [ 4x16, 16x16, 32x16, 4x32, 16x32, 32x32], num_cbs = 32}], [0], [3 : i32], [ 0x0x0x0]> | ||
#system_memory = #ttnn.buffer_type<system_memory> | ||
#ttnn_layout = #ttnn.ttnn_layout<(d0, d1) -> (d0, d1), <1x1>, memref<64x128xf32, #system_memory>> | ||
#ttnn_layout1 = #ttnn.ttnn_layout<(d0, d1) -> (d0, d1), <1x1>, memref<2x4x!tt.tile<32x32, f32>, #dram>, interleaved> | ||
#ttnn_layout2 = #ttnn.ttnn_layout<(d0, d1) -> (d0, d1), <1x1>, memref<64x128xf32, #dram>, interleaved> | ||
module attributes {tt.device = #device, tt.system_desc = #system_desc} { | ||
func.func @forward(%arg0: tensor<64x128xf32, #ttnn_layout>, %arg1: tensor<64x128xf32, #ttnn_layout>) -> tensor<64x128xf32, #ttnn_layout> { | ||
%0 = "ttnn.get_device"() <{mesh_shape = #ttnn<mesh_shape 1x1>}> : () -> !tt.device<#device> | ||
%1 = "ttnn.to_layout"(%arg0) <{layout = #ttnn.layout<tile>}> : (tensor<64x128xf32, #ttnn_layout>) -> tensor<64x128xf32, #ttnn_layout1> | ||
%2 = "ttnn.to_device"(%1, %0) <{memory_config = #ttnn.memory_config<<interleaved>, #dram, <<2x4>>>}> : (tensor<64x128xf32, #ttnn_layout1>, !tt.device<#device>) -> tensor<64x128xf32, #ttnn_layout1> | ||
"ttnn.deallocate"(%1) <{force = false}> : (tensor<64x128xf32, #ttnn_layout1>) -> () | ||
%3 = "ttnn.to_layout"(%arg1) <{layout = #ttnn.layout<tile>}> : (tensor<64x128xf32, #ttnn_layout>) -> tensor<64x128xf32, #ttnn_layout1> | ||
%4 = "ttnn.to_device"(%3, %0) <{memory_config = #ttnn.memory_config<<interleaved>, #dram, <<2x4>>>}> : (tensor<64x128xf32, #ttnn_layout1>, !tt.device<#device>) -> tensor<64x128xf32, #ttnn_layout1> | ||
"ttnn.deallocate"(%3) <{force = false}> : (tensor<64x128xf32, #ttnn_layout1>) -> () | ||
%5 = "ttnn.empty"(%0) <{dtype = #tt.supportedDataTypes<f32>, layout = #ttnn.layout<row_major>, memory_config = #ttnn.memory_config<<interleaved>, #dram, <<64x128>>>, shape = #ttnn.shape<64x128>}> : (!tt.device<#device>) -> tensor<64x128xf32, #ttnn_layout2> | ||
// CHECK: %[[C:.*]] = "ttnn.multiply"[[C:.*]] | ||
%6 = "ttnn.multiply"(%2, %4, %5) <{operandSegmentSizes = array<i32: 2, 1>}> : (tensor<64x128xf32, #ttnn_layout1>, tensor<64x128xf32, #ttnn_layout1>, tensor<64x128xf32, #ttnn_layout2>) -> tensor<64x128xf32, #ttnn_layout2> | ||
"ttnn.deallocate"(%4) <{force = false}> : (tensor<64x128xf32, #ttnn_layout1>) -> () | ||
"ttnn.deallocate"(%2) <{force = false}> : (tensor<64x128xf32, #ttnn_layout1>) -> () | ||
%7 = "ttnn.to_layout"(%arg0) <{layout = #ttnn.layout<tile>}> : (tensor<64x128xf32, #ttnn_layout>) -> tensor<64x128xf32, #ttnn_layout1> | ||
%8 = "ttnn.to_device"(%7, %0) <{memory_config = #ttnn.memory_config<<interleaved>, #dram, <<2x4>>>}> : (tensor<64x128xf32, #ttnn_layout1>, !tt.device<#device>) -> tensor<64x128xf32, #ttnn_layout1> | ||
"ttnn.deallocate"(%7) <{force = false}> : (tensor<64x128xf32, #ttnn_layout1>) -> () | ||
%9 = "ttnn.to_layout"(%arg1) <{layout = #ttnn.layout<tile>}> : (tensor<64x128xf32, #ttnn_layout>) -> tensor<64x128xf32, #ttnn_layout1> | ||
%10 = "ttnn.to_device"(%9, %0) <{memory_config = #ttnn.memory_config<<interleaved>, #dram, <<2x4>>>}> : (tensor<64x128xf32, #ttnn_layout1>, !tt.device<#device>) -> tensor<64x128xf32, #ttnn_layout1> | ||
"ttnn.deallocate"(%9) <{force = false}> : (tensor<64x128xf32, #ttnn_layout1>) -> () | ||
%11 = "ttnn.empty"(%0) <{dtype = #tt.supportedDataTypes<f32>, layout = #ttnn.layout<row_major>, memory_config = #ttnn.memory_config<<interleaved>, #dram, <<64x128>>>, shape = #ttnn.shape<64x128>}> : (!tt.device<#device>) -> tensor<64x128xf32, #ttnn_layout2> | ||
// CHECK-NOT: %[[C:.*]] = "ttnn.add"[[C:.*]] | ||
%12 = "ttnn.add"(%8, %10, %11) <{operandSegmentSizes = array<i32: 2, 1>}> : (tensor<64x128xf32, #ttnn_layout1>, tensor<64x128xf32, #ttnn_layout1>, tensor<64x128xf32, #ttnn_layout2>) -> tensor<64x128xf32, #ttnn_layout2> | ||
"ttnn.deallocate"(%11) <{force = false}> : (tensor<64x128xf32, #ttnn_layout2>) -> () | ||
"ttnn.deallocate"(%10) <{force = false}> : (tensor<64x128xf32, #ttnn_layout1>) -> () | ||
"ttnn.deallocate"(%8) <{force = false}> : (tensor<64x128xf32, #ttnn_layout1>) -> () | ||
%13 = "ttnn.to_layout"(%arg0) <{layout = #ttnn.layout<tile>}> : (tensor<64x128xf32, #ttnn_layout>) -> tensor<64x128xf32, #ttnn_layout1> | ||
%14 = "ttnn.to_device"(%13, %0) <{memory_config = #ttnn.memory_config<<interleaved>, #dram, <<2x4>>>}> : (tensor<64x128xf32, #ttnn_layout1>, !tt.device<#device>) -> tensor<64x128xf32, #ttnn_layout1> | ||
"ttnn.deallocate"(%13) <{force = false}> : (tensor<64x128xf32, #ttnn_layout1>) -> () | ||
%15 = "ttnn.to_layout"(%arg1) <{layout = #ttnn.layout<tile>}> : (tensor<64x128xf32, #ttnn_layout>) -> tensor<64x128xf32, #ttnn_layout1> | ||
%16 = "ttnn.to_device"(%15, %0) <{memory_config = #ttnn.memory_config<<interleaved>, #dram, <<2x4>>>}> : (tensor<64x128xf32, #ttnn_layout1>, !tt.device<#device>) -> tensor<64x128xf32, #ttnn_layout1> | ||
"ttnn.deallocate"(%15) <{force = false}> : (tensor<64x128xf32, #ttnn_layout1>) -> () | ||
%17 = "ttnn.empty"(%0) <{dtype = #tt.supportedDataTypes<f32>, layout = #ttnn.layout<row_major>, memory_config = #ttnn.memory_config<<interleaved>, #dram, <<64x128>>>, shape = #ttnn.shape<64x128>}> : (!tt.device<#device>) -> tensor<64x128xf32, #ttnn_layout2> | ||
// CHECK-NOT: %[[C:.*]] = "ttnn.subtract"[[C:.*]] | ||
%18 = "ttnn.subtract"(%14, %16, %17) <{operandSegmentSizes = array<i32: 2, 1>}> : (tensor<64x128xf32, #ttnn_layout1>, tensor<64x128xf32, #ttnn_layout1>, tensor<64x128xf32, #ttnn_layout2>) -> tensor<64x128xf32, #ttnn_layout2> | ||
"ttnn.deallocate"(%17) <{force = false}> : (tensor<64x128xf32, #ttnn_layout2>) -> () | ||
"ttnn.deallocate"(%16) <{force = false}> : (tensor<64x128xf32, #ttnn_layout1>) -> () | ||
"ttnn.deallocate"(%14) <{force = false}> : (tensor<64x128xf32, #ttnn_layout1>) -> () | ||
%19 = "ttnn.to_layout"(%arg0) <{layout = #ttnn.layout<tile>}> : (tensor<64x128xf32, #ttnn_layout>) -> tensor<64x128xf32, #ttnn_layout1> | ||
%20 = "ttnn.to_device"(%19, %0) <{memory_config = #ttnn.memory_config<<interleaved>, #dram, <<2x4>>>}> : (tensor<64x128xf32, #ttnn_layout1>, !tt.device<#device>) -> tensor<64x128xf32, #ttnn_layout1> | ||
"ttnn.deallocate"(%19) <{force = false}> : (tensor<64x128xf32, #ttnn_layout1>) -> () | ||
%21 = "ttnn.to_layout"(%arg1) <{layout = #ttnn.layout<tile>}> : (tensor<64x128xf32, #ttnn_layout>) -> tensor<64x128xf32, #ttnn_layout1> | ||
%22 = "ttnn.to_device"(%21, %0) <{memory_config = #ttnn.memory_config<<interleaved>, #dram, <<2x4>>>}> : (tensor<64x128xf32, #ttnn_layout1>, !tt.device<#device>) -> tensor<64x128xf32, #ttnn_layout1> | ||
"ttnn.deallocate"(%21) <{force = false}> : (tensor<64x128xf32, #ttnn_layout1>) -> () | ||
%23 = "ttnn.empty"(%0) <{dtype = #tt.supportedDataTypes<f32>, layout = #ttnn.layout<row_major>, memory_config = #ttnn.memory_config<<interleaved>, #dram, <<64x128>>>, shape = #ttnn.shape<64x128>}> : (!tt.device<#device>) -> tensor<64x128xf32, #ttnn_layout2> | ||
// CHECK-NOT: %[[C:.*]] = "ttnn.div"[[C:.*]] | ||
%24 = "ttnn.div"(%20, %22, %23) <{operandSegmentSizes = array<i32: 2, 1>}> : (tensor<64x128xf32, #ttnn_layout1>, tensor<64x128xf32, #ttnn_layout1>, tensor<64x128xf32, #ttnn_layout2>) -> tensor<64x128xf32, #ttnn_layout2> | ||
"ttnn.deallocate"(%23) <{force = false}> : (tensor<64x128xf32, #ttnn_layout2>) -> () | ||
"ttnn.deallocate"(%22) <{force = false}> : (tensor<64x128xf32, #ttnn_layout1>) -> () | ||
"ttnn.deallocate"(%20) <{force = false}> : (tensor<64x128xf32, #ttnn_layout1>) -> () | ||
%25 = "ttnn.to_layout"(%arg0) <{layout = #ttnn.layout<tile>}> : (tensor<64x128xf32, #ttnn_layout>) -> tensor<64x128xf32, #ttnn_layout1> | ||
%26 = "ttnn.to_device"(%25, %0) <{memory_config = #ttnn.memory_config<<interleaved>, #dram, <<2x4>>>}> : (tensor<64x128xf32, #ttnn_layout1>, !tt.device<#device>) -> tensor<64x128xf32, #ttnn_layout1> | ||
"ttnn.deallocate"(%25) <{force = false}> : (tensor<64x128xf32, #ttnn_layout1>) -> () | ||
%27 = "ttnn.to_layout"(%arg1) <{layout = #ttnn.layout<tile>}> : (tensor<64x128xf32, #ttnn_layout>) -> tensor<64x128xf32, #ttnn_layout1> | ||
%28 = "ttnn.to_device"(%27, %0) <{memory_config = #ttnn.memory_config<<interleaved>, #dram, <<2x4>>>}> : (tensor<64x128xf32, #ttnn_layout1>, !tt.device<#device>) -> tensor<64x128xf32, #ttnn_layout1> | ||
"ttnn.deallocate"(%27) <{force = false}> : (tensor<64x128xf32, #ttnn_layout1>) -> () | ||
%29 = "ttnn.empty"(%0) <{dtype = #tt.supportedDataTypes<f32>, layout = #ttnn.layout<row_major>, memory_config = #ttnn.memory_config<<interleaved>, #dram, <<64x128>>>, shape = #ttnn.shape<64x128>}> : (!tt.device<#device>) -> tensor<64x128xf32, #ttnn_layout2> | ||
// CHECK-NOT: %[[C:.*]] = "ttnn.eq"[[C:.*]] | ||
%30 = "ttnn.eq"(%26, %28, %29) <{operandSegmentSizes = array<i32: 2, 1>}> : (tensor<64x128xf32, #ttnn_layout1>, tensor<64x128xf32, #ttnn_layout1>, tensor<64x128xf32, #ttnn_layout2>) -> tensor<64x128xf32, #ttnn_layout2> | ||
"ttnn.deallocate"(%29) <{force = false}> : (tensor<64x128xf32, #ttnn_layout2>) -> () | ||
"ttnn.deallocate"(%28) <{force = false}> : (tensor<64x128xf32, #ttnn_layout1>) -> () | ||
"ttnn.deallocate"(%26) <{force = false}> : (tensor<64x128xf32, #ttnn_layout1>) -> () | ||
%31 = "ttnn.from_device"(%6) : (tensor<64x128xf32, #ttnn_layout2>) -> tensor<64x128xf32, #ttnn_layout> | ||
"ttnn.deallocate"(%5) <{force = false}> : (tensor<64x128xf32, #ttnn_layout2>) -> () | ||
%32 = "ttnn.to_layout"(%31) <{layout = #ttnn.layout<row_major>}> : (tensor<64x128xf32, #ttnn_layout>) -> tensor<64x128xf32, #ttnn_layout> | ||
"ttnn.deallocate"(%31) <{force = false}> : (tensor<64x128xf32, #ttnn_layout>) -> () | ||
return %32 : tensor<64x128xf32, #ttnn_layout> | ||
} | ||
} |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Should
Pure
trait be the top-level trait? I'm thinking aboutalloc
anddealloc
. Everydealloc
will trivially be removed since it doesn't produce the result.There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Good point, we probably should adopt
MemAlloc
andMemFree
traits for those respectively.