Skip to content
This repository was archived by the owner on Jul 7, 2023. It is now read-only.
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 3 additions & 3 deletions tensor2tensor/utils/multistep_optimizer.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
# coding=utf-8
# Copyright 2019 The Tensor2Tensor Authors.
# Copyright 2020 The Tensor2Tensor Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
Expand All @@ -26,10 +26,10 @@
from __future__ import division
from __future__ import print_function

import tensorflow as tf
import tensorflow.compat.v1 as tf


class MultistepAdamOptimizer(tf.compat.v1.train.AdamOptimizer):
class MultistepAdamOptimizer(tf.train.AdamOptimizer):
"""Adam with SGD updates every n steps with accumulated gradients."""

def __init__(self, learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-8,
Expand Down
4 changes: 2 additions & 2 deletions tensor2tensor/utils/multistep_optimizer_test.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
# coding=utf-8
# Copyright 2019 The Tensor2Tensor Authors.
# Copyright 2020 The Tensor2Tensor Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
Expand All @@ -20,7 +20,7 @@

import numpy as np
from tensor2tensor.utils import multistep_optimizer
import tensorflow as tf
import tensorflow.compat.v1 as tf


class MultistepAdamOptimizerTest(tf.test.TestCase):
Expand Down
229 changes: 229 additions & 0 deletions tensor2tensor/utils/multistep_with_adamoptimizer.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,229 @@
# coding=utf-8
# Copyright 2019 The Tensor2Tensor Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Multi-step optimizers simulating large batches.

Optimizer variants which make it possible to use very large batch sizes with
limited GPU memory. Optimizers in this module accumulate the gradients for n
batches, and call the optimizer's update rule every n batches with the
accumulated gradients.

See [Saunders et al., 2018](https://arxiv.org/abs/1805.00456) for details.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf
from tensorflow.python.eager import context
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import resource_variable_ops
from tensorflow.python.ops import state_ops
from tensorflow.python.training import optimizer
from tensorflow.python.training import training_ops
from tensorflow.python.util.tf_export import tf_export
from tensorflow.keras import backend as K


class MultistepAdamOptimizer(optimizer.Optimizer):
"""Adam with SGD updates every n steps with accumulated gradients."""

def __init__(self, learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-8,
use_locking=False, name="Adam", n=1):
super(MultistepAdamOptimizer, self).__init__(use_locking=use_locking, name=name)
self._lr = learning_rate
self._beta1 = beta1
self._beta2 = beta2
self._epsilon = epsilon
# Tensor versions of the constructor arguments, created in _prepare().
self._lr_t = None
self._beta1_t = None
self._beta2_t = None
self._epsilon_t = None
self._n = n # Call Adam optimizer every n batches with accumulated grads
self._n_t = None # n as tensor

def _get_beta_accumulators(self):
with ops.init_scope():
if context.executing_eagerly():
graph = None
else:
graph = ops.get_default_graph()
return (self._get_non_slot_variable("beta1_power", graph=graph),
self._get_non_slot_variable("beta2_power", graph=graph))

def _create_slots(self, var_list):
"""Create slot variables for Adam with accumulated gradients."""
first_var = min(var_list, key=lambda x: x.name)
self._create_non_slot_variable(initial_value=self._beta1, name="beta1_power", colocate_with=first_var)
self._create_non_slot_variable(initial_value=self._beta2, name="beta2_power", colocate_with=first_var)
#if iter is initialized as an int32, this optimizer could not run
#with tensorflow_hub with a tensorflow-gpu version
self._create_non_slot_variable(initial_value=0.0 if self._n == 1 else 1.0, name="iter", colocate_with=first_var)
# Create slots for the first and second moments, as well as grad_acc.
for v in var_list:
self._zeros_slot(v, "m", self._name)
self._zeros_slot(v, "v", self._name)
self._zeros_slot(v, "grad_acc", self._name)


def _get_iter_variable(self):
graph = (
None if tf.executing_eagerly() else tf.get_default_graph())
return self._get_non_slot_variable("iter", graph=graph)

def _prepare(self):
lr = self._call_if_callable(self._lr)
beta1 = self._call_if_callable(self._beta1)
beta2 = self._call_if_callable(self._beta2)
epsilon = self._call_if_callable(self._epsilon)
self._beta1_t = ops.convert_to_tensor(beta1, name="beta1")
self._beta2_t = ops.convert_to_tensor(beta2, name="beta2")
self._lr_t = ops.convert_to_tensor(lr, name="learning_rate")
self._epsilon_t = ops.convert_to_tensor(epsilon, name="epsilon")
self._n_t = tf.convert_to_tensor(self._n, name="n")

def _apply_cond(self, apply_fn, grad, var, *args, **kwargs):
"""Apply conditionally if counter is zero."""
grad_acc = self.get_slot(var, "grad_acc")

def apply_adam(grad_acc, apply_fn, grad, var, *args, **kwargs):
total_grad = (grad_acc + grad) / tf.cast(self._n_t, grad.dtype)
adam_op = apply_fn(total_grad, var, *args, **kwargs)
with tf.control_dependencies([adam_op]):
grad_acc_to_zero_op = grad_acc.assign(tf.zeros_like(grad_acc),
use_locking=self._use_locking)
return tf.group(adam_op, grad_acc_to_zero_op)

def accumulate_gradient(grad_acc, grad):
assign_op = tf.assign_add(grad_acc, grad, use_locking=self._use_locking)
return tf.group(assign_op) # Strip return value

return tf.cond(
tf.equal(self._get_iter_variable(), 0),
lambda: apply_adam(grad_acc, apply_fn, grad, var, *args, **kwargs),
lambda: accumulate_gradient(grad_acc, grad))

def _apply_dense(self, grad, var):
return self._apply_cond(self._apply_dense_in_action, grad, var)

def _apply_dense_in_action(self, grad, var):
m = self.get_slot(var, "m")
v = self.get_slot(var, "v")
beta1_power, beta2_power = self._get_beta_accumulators()
return training_ops.apply_adam(var, m, v,
math_ops.cast(beta1_power, var.dtype.base_dtype),
math_ops.cast(beta2_power, var.dtype.base_dtype),
math_ops.cast(self._lr_t, var.dtype.base_dtype),
math_ops.cast(self._beta1_t, var.dtype.base_dtype),
math_ops.cast(self._beta2_t, var.dtype.base_dtype),
math_ops.cast(self._epsilon_t, var.dtype.base_dtype),
grad,
use_locking=self._use_locking).op

def _resource_apply_dense(self, grad, var):
return self._apply_cond(self._resource_apply_dense_in_action, grad, var)

def _resource_apply_dense_in_action(self, grad, var):
m = self.get_slot(var, "m")
v = self.get_slot(var, "v")
beta1_power, beta2_power = self._get_beta_accumulators()
return training_ops.resource_apply_adam(var.handle,
m.handle,
v.handle,
math_ops.cast(beta1_power, grad.dtype.base_dtype),
math_ops.cast(beta2_power, grad.dtype.base_dtype),
math_ops.cast(self._lr_t, var.dtype.base_dtype),
math_ops.cast(self._beta1_t, grad.dtype.base_dtype),
math_ops.cast(self._beta2_t, grad.dtype.base_dtype),
math_ops.cast(self._epsilon_t, grad.dtype.base_dtype),
grad, use_locking=self._use_locking)

def _apply_sparse_shared(self, grad, var, indices, scatter_add):
beta1_power, beta2_power = self._get_beta_accumulators()
beta1_power = math_ops.cast(beta1_power, var.dtype.base_dtype)
beta2_power = math_ops.cast(beta2_power, var.dtype.base_dtype)
lr_t = math_ops.cast(self._lr_t, var.dtype.base_dtype)
beta1_t = math_ops.cast(self._beta1_t, var.dtype.base_dtype)
beta2_t = math_ops.cast(self._beta2_t, var.dtype.base_dtype)
epsilon_t = math_ops.cast(self._epsilon_t, var.dtype.base_dtype)
lr = (lr_t * math_ops.sqrt(1 - beta2_power) / (1 - beta1_power))
# m_t = beta1 * m + (1 - beta1) * g_t
m = self.get_slot(var, "m")
m_scaled_g_values = grad * (1 - beta1_t)
m_t = state_ops.assign(m, m * beta1_t, use_locking=self._use_locking)
with ops.control_dependencies([m_t]):
m_t = scatter_add(m, indices, m_scaled_g_values)
# v_t = beta2 * v + (1 - beta2) * (g_t * g_t)
v = self.get_slot(var, "v")
v_scaled_g_values = (grad * grad) * (1 - beta2_t)
v_t = state_ops.assign(v, v * beta2_t, use_locking=self._use_locking)
with ops.control_dependencies([v_t]):
v_t = scatter_add(v, indices, v_scaled_g_values)
v_sqrt = math_ops.sqrt(v_t)
var_update = state_ops.assign_sub(var, lr * m_t / (v_sqrt + epsilon_t), use_locking=self._use_locking)
return control_flow_ops.group(*[var_update, m_t, v_t])

def _apply_sparse(self, grad, var):
# TODO(fstahlberg): Implement a sparse version
tf.logging.warning("MultistepAdamOptimizer does not support sparse updates")
dense_grad = tf.convert_to_tensor(grad)
return self._apply_cond(self._apply_dense_in_action, dense_grad, var)

def _resource_apply_sparse_duplicate_indices(self, grad, var, indices):
tf.logging.warning("MultistepAdamOptimizer does not support sparse updates")
# Note that conversion to a dense Tensor handles duplicate `indices`
# correctly (summing them). A real sparse implementation will probably want
# to override _resource_apply_sparse instead so it gets them de-duplicated
# automatically.
dense_grad = tf.convert_to_tensor(tf.IndexedSlices(values=grad,
indices=indices, dense_shape=tf.shape(var)))
return self._apply_cond(self._resource_apply_dense_in_action, dense_grad, var)

def _resource_scatter_add(self, x, i, v):
with ops.control_dependencies(
[resource_variable_ops.resource_scatter_add(x.handle, i, v)]):
return x.value()

def _resource_apply_sparse(self, grad, var, indices):
return self._apply_sparse_shared(grad, var, indices, self._resource_scatter_add)

def _finish(self, update_ops, name_scope):
"""Updates beta_power variables every n batches and incrs counter."""
iter_ = self._get_iter_variable()
beta1_power, beta2_power = self._get_beta_accumulators()
with tf.control_dependencies(update_ops):
with tf.colocate_with(iter_):
def update_beta_op():
update_beta1 = beta1_power.assign(
beta1_power * self._beta1_t,
use_locking=self._use_locking)
update_beta2 = beta2_power.assign(
beta2_power * self._beta2_t,
use_locking=self._use_locking)
return tf.group(update_beta1, update_beta2)
maybe_update_beta = tf.cond(
tf.equal(iter_, 0), update_beta_op, tf.no_op)
with tf.control_dependencies([maybe_update_beta]):
#TODO(Cuong): It is suboptimal here because we have to cast twice (float to int,
#and then int to float)
update_iter = iter_.assign(K.cast(tf.mod(K.cast(iter_ + 1.0, dtype=dtypes.int32), self._n_t), dtype=dtypes.float32),
use_locking=self._use_locking)
return tf.group(
*update_ops + [update_iter, maybe_update_beta], name=name_scope)

108 changes: 108 additions & 0 deletions tensor2tensor/utils/multistep_with_adamoptimizer_test.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,108 @@
# coding=utf-8
# Copyright 2019 The Tensor2Tensor Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Multi-step Optimizer Test Module for TensorFlow."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
from tensor2tensor.utils import multistep_optimizer
import tensorflow as tf


class MultistepAdamOptimizerTest(tf.test.TestCase):

def testMultistep(self):
dtype = tf.float32
beta1 = 0.2
beta2 = 0.99
alpha = 10.0
grads0_np_lst = [
np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype),
np.array([0.2, -0.1], dtype=dtype.as_numpy_dtype),
np.array([0.3, 0.1], dtype=dtype.as_numpy_dtype),
np.array([0.4, -0.1], dtype=dtype.as_numpy_dtype)
]
grads1_np_lst = [
np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype),
np.array([0.02, 0.02], dtype=dtype.as_numpy_dtype),
np.array([-0.04, 0.04], dtype=dtype.as_numpy_dtype),
np.array([-0.04, 0.06], dtype=dtype.as_numpy_dtype)
]
var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype)
var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype)
# Test accumulating gradients for n=1..4 steps
for n in range(1, 5):
with tf.Graph().as_default():
with tf.Session():
singlestep_var0 = tf.Variable(var0_np)
singlestep_var1 = tf.Variable(var1_np)

multistep_var0 = tf.Variable(var0_np)
multistep_var1 = tf.Variable(var1_np)

singlestep_opt = tf.train.AdamOptimizer(
beta1=beta1, beta2=beta2, learning_rate=alpha)
multistep_opt = multistep_optimizer.MultistepAdamOptimizer(
n=n, beta1=beta1, beta2=beta2, learning_rate=alpha)

singlestep_update = singlestep_opt.apply_gradients([
(tf.constant(sum(grads0_np_lst[:n]) / n), singlestep_var0),
(tf.constant(sum(grads1_np_lst[:n]) / n), singlestep_var1)])
multistep_updates = [
multistep_opt.apply_gradients([(tf.constant(g0), multistep_var0),
(tf.constant(g1), multistep_var1)])
for g0, g1 in zip(grads0_np_lst, grads1_np_lst)][:n]

self.evaluate(tf.global_variables_initializer())
(singlestep_beta1_power,
singlestep_beta2_power) = singlestep_opt._get_beta_accumulators()
(multistep_beta1_power,
multistep_beta2_power) = multistep_opt._get_beta_accumulators()

# Run 3 steps of Adam
for _ in range(1, 4):
self.evaluate(singlestep_update)
for multistep_update in multistep_updates:
self.evaluate(multistep_update)

self.assertAllCloseAccordingToType(
self.evaluate(singlestep_beta1_power),
self.evaluate(multistep_beta1_power))
self.assertAllCloseAccordingToType(
self.evaluate(singlestep_beta2_power),
self.evaluate(multistep_beta2_power))
# Validate updated params
self.assertAllCloseAccordingToType(
self.evaluate(singlestep_var0),
self.evaluate(multistep_var0))
self.assertAllCloseAccordingToType(
self.evaluate(singlestep_var1),
self.evaluate(multistep_var1))

def testResourceVariables(self):
v1 = tf.Variable([1., 2.], use_resource=True)
v2 = tf.Variable([3., 4.], use_resource=True)
with tf.GradientTape() as tape:
tape.watch([v1, v2])
loss = tf.reduce_sum(tf.gather(params=v1, indices=[0]) + v2)
v1_grad, v2_grad = tape.gradient(loss, [v1, v2])
multistep_opt = multistep_optimizer.MultistepAdamOptimizer(0.1)
multistep_opt.apply_gradients(((v1_grad, v1), (v2_grad, v2)))


if __name__ == '__main__':
tf.test.main()