Skip to content
This repository was archived by the owner on Jul 7, 2023. It is now read-only.
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
24 changes: 1 addition & 23 deletions tensor2tensor/models/research/rl.py
Original file line number Diff line number Diff line change
Expand Up @@ -178,28 +178,6 @@ def ppo_pong_ae_base():
return hparams


@registry.register_hparams
def pong_model_free():
"""TODO(piotrmilos): Document this."""
hparams = mfrl_base()
hparams.batch_size = 2
hparams.ppo_eval_every_epochs = 2
hparams.ppo_epochs_num = 4
hparams.add_hparam("ppo_optimization_epochs", 3)
hparams.add_hparam("ppo_epoch_length", 30)
hparams.add_hparam("ppo_learning_rate", 8e-05)
hparams.add_hparam("ppo_optimizer", "Adam")
hparams.add_hparam("ppo_optimization_batch_size", 4)
hparams.add_hparam("ppo_save_models_every_epochs", 1000000)
env = gym_env.T2TGymEnv("PongNoFrameskip-v4", batch_size=2)
env.start_new_epoch(0)
hparams.add_hparam("env_fn", make_real_env_fn(env))
eval_env = gym_env.T2TGymEnv("PongNoFrameskip-v4", batch_size=2)
eval_env.start_new_epoch(0)
hparams.add_hparam("eval_env_fn", make_real_env_fn(eval_env))
return hparams


@registry.register_hparams
def dqn_atari_base():
# These params are based on agents/dqn/configs/dqn.gin
Expand Down Expand Up @@ -242,7 +220,7 @@ def dqn_original_params():
@registry.register_hparams
def mfrl_original():
return tf.contrib.training.HParams(
game="",
game="pong",
base_algo="ppo",
base_algo_params="ppo_original_params",
batch_size=16,
Expand Down
17 changes: 9 additions & 8 deletions tensor2tensor/rl/ppo_learner.py
Original file line number Diff line number Diff line change
Expand Up @@ -460,11 +460,12 @@ def stop_condition(i, _, resets):
new_memory.append(mem)
memory = new_memory

mean_score_summary = tf.cond(
tf.greater(scores_num, 0),
lambda: tf.summary.scalar("mean_score_this_iter", mean_score), str)
summaries = tf.summary.merge([
mean_score_summary,
tf.summary.scalar("episodes_finished_this_iter", scores_num)
])
return memory, summaries, initialization_lambda
with tf.variable_scope(scope, reuse=tf.AUTO_REUSE):
mean_score_summary = tf.cond(
tf.greater(scores_num, 0),
lambda: tf.summary.scalar("mean_score_this_iter", mean_score), str)
summaries = tf.summary.merge([
mean_score_summary,
tf.summary.scalar("episodes_finished_this_iter", scores_num)
])
return memory, summaries, initialization_lambda