Skip to content
This repository was archived by the owner on Apr 23, 2025. It is now read-only.
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
78 changes: 75 additions & 3 deletions Models/ImageClassification/SqueezeNet.swift
Original file line number Diff line number Diff line change
Expand Up @@ -52,8 +52,12 @@ public struct Fire: Layer {
}
}

public struct SqueezeNet: Layer {
public var conv1 = Conv2D<Float>(filterShape: (7, 7, 3, 96), strides: (2, 2), padding: .same)
public struct SqueezeNetV1_0: Layer {
public var conv1 = Conv2D<Float>(
filterShape: (7, 7, 3, 96),
strides: (2, 2),
padding: .same,
activation: relu)
public var maxPool1 = MaxPool2D<Float>(poolSize: (3, 3), strides: (2, 2))
public var fire2 = Fire(
inputFilterCount: 96,
Expand Down Expand Up @@ -102,7 +106,7 @@ public struct SqueezeNet: Layer {
public var dropout = Dropout<Float>(probability: 0.5)

public init(classCount: Int) {
conv10 = Conv2D(filterShape: (1, 1, 512, classCount), strides: (1, 1))
conv10 = Conv2D(filterShape: (1, 1, 512, classCount), strides: (1, 1), activation: relu)
}

@differentiable
Expand All @@ -115,3 +119,71 @@ public struct SqueezeNet: Layer {
return convolved2
}
}

public struct SqueezeNetV1_1: Layer {
public var conv1 = Conv2D<Float>(
filterShape: (3, 3, 3, 64),
strides: (2, 2),
padding: .same,
activation: relu)
public var maxPool1 = MaxPool2D<Float>(poolSize: (3, 3), strides: (2, 2))
public var fire2 = Fire(
inputFilterCount: 64,
squeezeFilterCount: 16,
expand1FilterCount: 64,
expand3FilterCount: 64)
public var fire3 = Fire(
inputFilterCount: 128,
squeezeFilterCount: 16,
expand1FilterCount: 64,
expand3FilterCount: 64)
public var maxPool3 = MaxPool2D<Float>(poolSize: (3, 3), strides: (2, 2))
public var fire4 = Fire(
inputFilterCount: 128,
squeezeFilterCount: 32,
expand1FilterCount: 128,
expand3FilterCount: 128)
public var fire5 = Fire(
inputFilterCount: 256,
squeezeFilterCount: 32,
expand1FilterCount: 128,
expand3FilterCount: 128)
public var maxPool5 = MaxPool2D<Float>(poolSize: (3, 3), strides: (2, 2))
public var fire6 = Fire(
inputFilterCount: 256,
squeezeFilterCount: 48,
expand1FilterCount: 192,
expand3FilterCount: 192)
public var fire7 = Fire(
inputFilterCount: 384,
squeezeFilterCount: 48,
expand1FilterCount: 192,
expand3FilterCount: 192)
public var fire8 = Fire(
inputFilterCount: 384,
squeezeFilterCount: 64,
expand1FilterCount: 256,
expand3FilterCount: 256)
public var fire9 = Fire(
inputFilterCount: 512,
squeezeFilterCount: 64,
expand1FilterCount: 256,
expand3FilterCount: 256)
public var conv10: Conv2D<Float>
public var avgPool10 = AvgPool2D<Float>(poolSize: (13, 13), strides: (1, 1))
public var dropout = Dropout<Float>(probability: 0.5)

public init(classCount: Int) {
conv10 = Conv2D(filterShape: (1, 1, 512, classCount), strides: (1, 1), activation: relu)
}

@differentiable
public func callAsFunction(_ input: Tensor<Float>) -> Tensor<Float> {
let convolved1 = input.sequenced(through: conv1, maxPool1)
let fired1 = convolved1.sequenced(through: fire2, fire3, maxPool3, fire4, fire5)
let fired2 = fired1.sequenced(through: maxPool5, fire6, fire7, fire8, fire9)
let convolved2 = fired2.sequenced(through: dropout, conv10, avgPool10)
.reshaped(to: [input.shape[0], conv10.filter.shape[3]])
return convolved2
}
}
16 changes: 13 additions & 3 deletions Tests/ImageClassificationTests/Inference.swift
Original file line number Diff line number Diff line change
Expand Up @@ -92,11 +92,20 @@ final class ImageClassificationInferenceTests: XCTestCase {
XCTAssertEqual(resNet34ImageNetResult.shape, [1, 1000])
}

func testSqueezeNet() {
func testSqueezeNetV1_0() {
let input = Tensor<Float>(
randomNormal: [1, 224, 224, 3], mean: Tensor<Float>(0.5),
standardDeviation: Tensor<Float>(0.1), seed: (0xffeffe, 0xfffe))
let squeezeNet = SqueezeNet(classCount: 1000)
let squeezeNet = SqueezeNetV1_0(classCount: 1000)
let squeezeNetResult = squeezeNet(input)
XCTAssertEqual(squeezeNetResult.shape, [1, 1000])
}

func testSqueezeNetV1_1() {
let input = Tensor<Float>(
randomNormal: [1, 224, 224, 3], mean: Tensor<Float>(0.5),
standardDeviation: Tensor<Float>(0.1), seed: (0xffeffe, 0xfffe))
let squeezeNet = SqueezeNetV1_1(classCount: 1000)
let squeezeNetResult = squeezeNet(input)
XCTAssertEqual(squeezeNetResult.shape, [1, 1000])
}
Expand Down Expand Up @@ -152,7 +161,8 @@ extension ImageClassificationInferenceTests {
("testLeNet", testLeNet),
("testResNet", testResNet),
("testResNetV2", testResNetV2),
("testSqueezeNet", testSqueezeNet),
("testSqueezeNetV1_0", testSqueezeNetV1_0),
("testSqueezeNetV1_1", testSqueezeNetV1_1),
("testWideResNet", testWideResNet),
]
}