This repository was archived by the owner on Apr 23, 2025. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 150
Add GAN Example #181
Merged
Merged
Add GAN Example #181
Changes from all commits
Commits
Show all changes
19 commits
Select commit
Hold shift + click to select a range
b16005c
Add GAN Example
t-ae 19ba68d
Remove do blocks
t-ae e6edc38
Replace lrelu with closure
t-ae 084510e
Remove typealiases
t-ae c70ad3d
Add comment
t-ae e52b0ec
Remove labels in GAN example
t-ae 813342d
Rename variables
t-ae c00416f
Code formatting, update comments
t-ae 799a3eb
Fix: latentDim -> latentSize
t-ae 6097719
Add spaces around *
t-ae b218e51
Code formatting, rename loss functions
t-ae 44a1904
Fix: generatorLossFunc -> generatorLoss
t-ae 39e997a
Break lines to make it fit within 100 columns
t-ae 9a79072
Update comments
t-ae 83bdb72
Rename plot->plotImage, imageGrid->gridImage, Code formatting
t-ae d1ec2bb
Refactor: Label creation
t-ae 4aac95f
Update comment
t-ae e4d3540
Remove type parameter, empty line
t-ae dff62cb
Update readme
t-ae File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,23 @@ | ||
| # Simple GAN | ||
|
|
||
| After Epoch 1: | ||
| <p align="center"> | ||
| <img src="images/epoch-1-output.png" height="270" width="360"> | ||
| </p> | ||
|
|
||
| After Epoch 10: | ||
| <p align="center"> | ||
| <img src="images/epoch-10-output.png" height="270" width="360"> | ||
| </p> | ||
|
|
||
| ## Setup | ||
|
|
||
| To begin, you'll need the [latest version of Swift for | ||
| TensorFlow](https://github.com/tensorflow/swift/blob/master/Installation.md) | ||
| installed. Make sure you've added the correct version of `swift` to your path. | ||
|
|
||
| To train the model, run: | ||
|
|
||
| ```sh | ||
| swift run GAN | ||
| ``` |
Binary file not shown.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change | ||||||
|---|---|---|---|---|---|---|---|---|
| @@ -0,0 +1,210 @@ | ||||||||
| // Copyright 2019 The TensorFlow Authors. All Rights Reserved. | ||||||||
| // | ||||||||
| // Licensed under the Apache License, Version 2.0 (the "License"); | ||||||||
| // you may not use this file except in compliance with the License. | ||||||||
| // You may obtain a copy of the License at | ||||||||
| // | ||||||||
| // http://www.apache.org/licenses/LICENSE-2.0 | ||||||||
| // | ||||||||
| // Unless required by applicable law or agreed to in writing, software | ||||||||
| // distributed under the License is distributed on an "AS IS" BASIS, | ||||||||
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||||||
| // See the License for the specific language governing permissions and | ||||||||
| // limitations under the License. | ||||||||
|
|
||||||||
| import Foundation | ||||||||
| import TensorFlow | ||||||||
| import Python | ||||||||
|
|
||||||||
| // Import Python modules. | ||||||||
| let matplotlib = Python.import("matplotlib") | ||||||||
| let np = Python.import("numpy") | ||||||||
| let plt = Python.import("matplotlib.pyplot") | ||||||||
|
|
||||||||
| // Turn off using display on server / Linux. | ||||||||
| matplotlib.use("Agg") | ||||||||
|
|
||||||||
| let epochCount = 10 | ||||||||
| let batchSize = 32 | ||||||||
| let outputFolder = "./output/" | ||||||||
| let imageHeight = 28, imageWidth = 28 | ||||||||
| let imageSize = imageHeight * imageWidth | ||||||||
| let latentSize = 64 | ||||||||
|
|
||||||||
| func plotImage(_ image: Tensor<Float>, name: String) { | ||||||||
| // Create figure. | ||||||||
| let ax = plt.gca() | ||||||||
| let array = np.array([image.scalars]) | ||||||||
| let pixels = array.reshape(image.shape) | ||||||||
| if !FileManager.default.fileExists(atPath: outputFolder) { | ||||||||
| try! FileManager.default.createDirectory( | ||||||||
| atPath: outputFolder, | ||||||||
| withIntermediateDirectories: false, | ||||||||
| attributes: nil) | ||||||||
| } | ||||||||
| ax.imshow(pixels, cmap: "gray") | ||||||||
| plt.savefig("\(outputFolder)\(name).png", dpi: 300) | ||||||||
| plt.close() | ||||||||
| } | ||||||||
|
|
||||||||
| /// Reads a file into an array of bytes. | ||||||||
| func readFile(_ filename: String) -> [UInt8] { | ||||||||
| let possibleFolders = [".", "Resources", "GAN/Resources"] | ||||||||
| for folder in possibleFolders { | ||||||||
| let parent = URL(fileURLWithPath: folder) | ||||||||
| let filePath = parent.appendingPathComponent(filename).path | ||||||||
| guard FileManager.default.fileExists(atPath: filePath) else { | ||||||||
| continue | ||||||||
| } | ||||||||
| let d = Python.open(filePath, "rb").read() | ||||||||
| return Array(numpy: np.frombuffer(d, dtype: np.uint8))! | ||||||||
| } | ||||||||
| print("Failed to find file with name \(filename) in the following folders: \(possibleFolders).") | ||||||||
| exit(-1) | ||||||||
| } | ||||||||
|
|
||||||||
| /// Reads MNIST images from specified file path. | ||||||||
| func readMNIST(imagesFile: String) -> Tensor<Float> { | ||||||||
| print("Reading data.") | ||||||||
| let images = readFile(imagesFile).dropFirst(16).map { Float($0) } | ||||||||
| let rowCount = images.count / imageSize | ||||||||
| print("Constructing data tensors.") | ||||||||
| return Tensor(shape: [rowCount, imageHeight * imageWidth], scalars: images) / 255.0 * 2 - 1 | ||||||||
| } | ||||||||
|
|
||||||||
| // Models | ||||||||
|
|
||||||||
| struct Generator: Layer { | ||||||||
| var dense1 = Dense<Float>(inputSize: latentSize, outputSize: latentSize * 2, | ||||||||
| activation: { leakyRelu($0) }) | ||||||||
| var dense2 = Dense<Float>(inputSize: latentSize * 2, outputSize: latentSize * 4, | ||||||||
| activation: { leakyRelu($0) }) | ||||||||
| var dense3 = Dense<Float>(inputSize: latentSize * 4, outputSize: latentSize * 8, | ||||||||
| activation: { leakyRelu($0) }) | ||||||||
| var dense4 = Dense<Float>(inputSize: latentSize * 8, outputSize: imageSize, | ||||||||
| activation: tanh) | ||||||||
|
|
||||||||
| var batchnorm1 = BatchNorm<Float>(featureCount: latentSize * 2) | ||||||||
| var batchnorm2 = BatchNorm<Float>(featureCount: latentSize * 4) | ||||||||
| var batchnorm3 = BatchNorm<Float>(featureCount: latentSize * 8) | ||||||||
|
|
||||||||
| @differentiable | ||||||||
| func callAsFunction(_ input: Tensor<Float>) -> Tensor<Float> { | ||||||||
| let x1 = batchnorm1(dense1(input)) | ||||||||
| let x2 = batchnorm2(dense2(x1)) | ||||||||
| let x3 = batchnorm3(dense3(x2)) | ||||||||
| return dense4(x3) | ||||||||
| } | ||||||||
| } | ||||||||
|
|
||||||||
| struct Discriminator: Layer { | ||||||||
| var dense1 = Dense<Float>(inputSize: imageSize, outputSize: 256, | ||||||||
| activation: { leakyRelu($0) }) | ||||||||
| var dense2 = Dense<Float>(inputSize: 256, outputSize: 64, | ||||||||
| activation: { leakyRelu($0) }) | ||||||||
| var dense3 = Dense<Float>(inputSize: 64, outputSize: 16, | ||||||||
| activation: { leakyRelu($0) }) | ||||||||
| var dense4 = Dense<Float>(inputSize: 16, outputSize: 1, | ||||||||
| activation: identity) | ||||||||
|
|
||||||||
| @differentiable | ||||||||
| func callAsFunction(_ input: Tensor<Float>) -> Tensor<Float> { | ||||||||
| input.sequenced(through: dense1, dense2, dense3, dense4) | ||||||||
| } | ||||||||
| } | ||||||||
|
|
||||||||
| // Loss functions | ||||||||
|
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
Suggested change
|
||||||||
|
|
||||||||
| @differentiable | ||||||||
| func generatorLoss(fakeLogits: Tensor<Float>) -> Tensor<Float> { | ||||||||
| sigmoidCrossEntropy(logits: fakeLogits, | ||||||||
| labels: Tensor(ones: fakeLogits.shape)) | ||||||||
| } | ||||||||
|
|
||||||||
| @differentiable | ||||||||
| func discriminatorLoss(realLogits: Tensor<Float>, fakeLogits: Tensor<Float>) -> Tensor<Float> { | ||||||||
| let realLoss = sigmoidCrossEntropy(logits: realLogits, | ||||||||
| labels: Tensor(ones: realLogits.shape)) | ||||||||
| let fakeLoss = sigmoidCrossEntropy(logits: fakeLogits, | ||||||||
| labels: Tensor(zeros: fakeLogits.shape)) | ||||||||
| return realLoss + fakeLoss | ||||||||
| } | ||||||||
|
|
||||||||
| /// Returns `size` samples of noise vector. | ||||||||
| func sampleVector(size: Int) -> Tensor<Float> { | ||||||||
| Tensor(randomNormal: [size, latentSize]) | ||||||||
| } | ||||||||
|
|
||||||||
| // MNIST data logic | ||||||||
|
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
Suggested change
|
||||||||
|
|
||||||||
| func minibatch<Scalar>(in x: Tensor<Scalar>, at index: Int) -> Tensor<Scalar> { | ||||||||
| let start = index * batchSize | ||||||||
| return x[start..<start+batchSize] | ||||||||
| } | ||||||||
|
|
||||||||
| let images = readMNIST(imagesFile: "train-images-idx3-ubyte") | ||||||||
|
|
||||||||
| var generator = Generator() | ||||||||
| var discriminator = Discriminator() | ||||||||
|
|
||||||||
| let optG = Adam(for: generator, learningRate: 2e-4, beta1: 0.5) | ||||||||
| let optD = Adam(for: discriminator, learningRate: 2e-4, beta1: 0.5) | ||||||||
|
|
||||||||
| // Noise vectors and plot function for testing | ||||||||
| let testImageGridSize = 4 | ||||||||
| let testVector = sampleVector(size: testImageGridSize * testImageGridSize) | ||||||||
| func plotTestImage(_ testImage: Tensor<Float>, name: String) { | ||||||||
| var gridImage = testImage.reshaped(to: [testImageGridSize, testImageGridSize, | ||||||||
| imageHeight, imageWidth]) | ||||||||
| // Add padding. | ||||||||
| gridImage = gridImage.padded(forSizes: [(0, 0), (0, 0), (1, 1), (1, 1)], with: 1) | ||||||||
| // Transpose to create single image. | ||||||||
| gridImage = gridImage.transposed(withPermutations: [0, 2, 1, 3]) | ||||||||
| gridImage = gridImage.reshaped(to: [(imageHeight + 2) * testImageGridSize, | ||||||||
| (imageWidth + 2) * testImageGridSize]) | ||||||||
| // Convert [-1, 1] range to [0, 1] range. | ||||||||
| gridImage = (gridImage + 1) / 2 | ||||||||
| plotImage(gridImage, name: name) | ||||||||
| } | ||||||||
|
|
||||||||
| print("Start training...") | ||||||||
|
|
||||||||
| // Start training loop. | ||||||||
| for epoch in 1...epochCount { | ||||||||
| // Start training phase. | ||||||||
| Context.local.learningPhase = .training | ||||||||
| for i in 0 ..< Int(images.shape[0]) / batchSize { | ||||||||
| // Perform alternative update. | ||||||||
| // Update generator. | ||||||||
| let vec1 = sampleVector(size: batchSize) | ||||||||
|
|
||||||||
| let 𝛁generator = generator.gradient { generator -> Tensor<Float> in | ||||||||
| let fakeImages = generator(vec1) | ||||||||
| let fakeLogits = discriminator(fakeImages) | ||||||||
| let loss = generatorLoss(fakeLogits: fakeLogits) | ||||||||
| return loss | ||||||||
| } | ||||||||
| optG.update(&generator.allDifferentiableVariables, along: 𝛁generator) | ||||||||
|
|
||||||||
| // Update discriminator. | ||||||||
| let realImages = minibatch(in: images, at: i) | ||||||||
| let vec2 = sampleVector(size: batchSize) | ||||||||
| let fakeImages = generator(vec2) | ||||||||
|
|
||||||||
| let 𝛁discriminator = discriminator.gradient { discriminator -> Tensor<Float> in | ||||||||
| let realLogits = discriminator(realImages) | ||||||||
| let fakeLogits = discriminator(fakeImages) | ||||||||
| let loss = discriminatorLoss(realLogits: realLogits, fakeLogits: fakeLogits) | ||||||||
| return loss | ||||||||
| } | ||||||||
| optD.update(&discriminator.allDifferentiableVariables, along: 𝛁discriminator) | ||||||||
| } | ||||||||
|
|
||||||||
| // Start inference phase. | ||||||||
| Context.local.learningPhase = .inference | ||||||||
| let testImage = generator(testVector) | ||||||||
| plotTestImage(testImage, name: "epoch-\(epoch)-output") | ||||||||
|
|
||||||||
| let lossG = generatorLoss(fakeLogits: testImage) | ||||||||
| print("[Epoch: \(epoch)] Loss-G: \(lossG)") | ||||||||
| } | ||||||||
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Add an empty line, since this is describing both
GeneratorandDiscriminatorbelow.