This project aims to detect lane lines based on the view of vehicle mounted camera using OpenCV.
Original | Result |
---|---|
import numpy as np
import cv2
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import glob
%matplotlib inline
def cal_undistort(img, objpoints, imgpoints):
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1], None,None)
undist = cv2.undistort(img, mtx, dist, None, mtx)
return undist, mtx, dist
def collect_callibration_points():
objpoints = []
imgpoints = []
images = glob.glob('./camera_cal/calibration*.jpg')
objp = np.zeros((6*9,3), np.float32)
objp[:,:2] = np.mgrid[0:9,0:6].T.reshape(-1, 2)
for fname in images:
img = mpimg.imread(fname)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, corners = cv2.findChessboardCorners(gray, (9, 6), None)
if ret == True:
imgpoints.append(corners)
objpoints.append(objp)
return imgpoints, objpoints
def compare_images(image1, image2, image1_exp="Image 1", image2_exp="Image 2"):
f, (ax1, ax2) = plt.subplots(1, 2, figsize=(24, 9))
f.tight_layout()
ax1.imshow(image1)
ax1.set_title(image1_exp, fontsize=50)
ax2.imshow(image2)
ax2.set_title(image2_exp, fontsize=50)
plt.subplots_adjust(left=0., right=1, top=0.9, bottom=0.)
imgpoints, objpoints = collect_callibration_points()
img = mpimg.imread('./camera_cal/calibration3.jpg')
undistorted, mtx, dist_coefficients = cal_undistort(img, objpoints, imgpoints)
#compare_images(img, undistorted, "Original Image", "Undistorted Image")
image_path = './test_images/straight_lines1.jpg'
image = mpimg.imread(image_path)
image, mtx, dist_coefficients = cal_undistort(image, objpoints, imgpoints)
def abs_sobel_thresh(image, orient='x', sobel_kernel=3, thresh=(0, 255)):
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
isX = True if orient == 'x' else False
sobel = cv2.Sobel(gray, cv2.CV_64F, isX, not isX)
abs_sobel = np.absolute(sobel)
scaled_sobel = np.uint8(255*abs_sobel/np.max(abs_sobel))
grad_binary = np.zeros_like(scaled_sobel)
grad_binary[(scaled_sobel >= thresh[0]) & (scaled_sobel <= thresh[1])] = 1
return grad_binary
def mag_thresh(image, sobel_kernel=3, mag_thresh=(0, 255)):
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=sobel_kernel)
sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=sobel_kernel)
abs_sobel = np.sqrt(sobelx**2 + sobely**2)
scaled_sobel = np.uint8(255*abs_sobel/np.max(abs_sobel))
mag_binary = np.zeros_like(scaled_sobel)
mag_binary[(scaled_sobel >= mag_thresh[0]) & (scaled_sobel <= mag_thresh[1])] = 1
return mag_binary
def dir_threshold(image, sobel_kernel=3, thresh=(0, np.pi/2)):
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=sobel_kernel)
sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=sobel_kernel)
abs_sobelx = np.absolute(sobelx)
abs_sobely = np.absolute(sobely)
grad_dir = np.arctan2(abs_sobely, abs_sobelx)
dir_binary = np.zeros_like(grad_dir)
dir_binary[(grad_dir >= thresh[0]) & (grad_dir <= thresh[1])] = 1
return dir_binary
def apply_thresholds(image, ksize=3):
gradx = abs_sobel_thresh(image, orient='x', sobel_kernel=ksize, thresh=(20, 100))
grady = abs_sobel_thresh(image, orient='y', sobel_kernel=ksize, thresh=(20, 100))
mag_binary = mag_thresh(image, sobel_kernel=ksize, mag_thresh=(30, 100))
dir_binary = dir_threshold(image, sobel_kernel=ksize, thresh=(0.7, 1.3))
combined = np.zeros_like(dir_binary)
combined[((gradx == 1) & (grady == 1)) | ((mag_binary == 1) & (dir_binary == 1))] = 1
return combined
combined = apply_thresholds(image)
compare_images(image, combined, "Original Image", "Gradient Thresholds")
def apply_color_threshold(image):
hls = cv2.cvtColor(image, cv2.COLOR_RGB2HLS)
s_channel = hls[:,:,2]
s_thresh_min = 170
s_thresh_max = 255
s_binary = np.zeros_like(s_channel)
s_binary[(s_channel >= s_thresh_min) & (s_channel <= s_thresh_max)] = 1
return s_binary
s_binary = apply_color_threshold(image)
compare_images(image, s_binary, "Original Image", "Color Threshold")
def combine_threshold(s_binary, combined):
combined_binary = np.zeros_like(combined)
combined_binary[(s_binary == 1) | (combined == 1)] = 1
return combined_binary
combined_binary = combine_threshold(s_binary, combined)
compare_images(image, combined_binary, "Original Image", "Gradient and Color Threshold")
def warp(img):
img_size = (img.shape[1], img.shape[0])
src = np.float32(
[[685, 450],
[1090, 710],
[220, 710],
[595, 450]])
dst = np.float32(
[[900, 0],
[900, 710],
[250, 710],
[250, 0]])
M = cv2.getPerspectiveTransform(src, dst)
Minv = cv2.getPerspectiveTransform(dst, src)
binary_warped = cv2.warpPerspective(img, M, img_size, flags=cv2.INTER_LINEAR)
return binary_warped, Minv
def compare_plotted_images(image1, image2, image1_exp="Image 1", image2_exp="Image 2"):
f, (ax1, ax2) = plt.subplots(1, 2, figsize=(24, 9))
f.tight_layout()
ax1.imshow(image1)
ax1.plot([685, 1090], [450, 710], color='r', linewidth="5")
ax1.plot([1090, 220], [710, 710], color='r', linewidth="5")
ax1.plot([220, 595], [710, 450], color='r', linewidth="5")
ax1.plot([595, 685], [450, 450], color='r', linewidth="5")
ax1.set_title(image1_exp, fontsize=50)
ax2.imshow(image2)
ax2.plot([900, 900], [0, 710], color='r', linewidth="5")
ax2.plot([900, 250], [710, 710], color='r', linewidth="5")
ax2.plot([250, 250], [710, 0], color='r', linewidth="5")
ax2.plot([250, 900], [0, 0], color='r', linewidth="5")
ax2.set_title(image2_exp, fontsize=50)
plt.subplots_adjust(left=0., right=1, top=0.9, bottom=0.)
warped, Minv = warp(image)
compare_plotted_images(image, warped, "Original Image", "Warped Image")
def get_histogram(binary_warped):
histogram = np.sum(binary_warped[binary_warped.shape[0]//2:,:], axis=0)
return histogram
binary_warped, Minv = warp(combined_binary)
histogram = get_histogram(binary_warped)
plt.plot(histogram)
[<matplotlib.lines.Line2D at 0x10b551898>]
def slide_window(binary_warped, histogram):
out_img = np.dstack((binary_warped, binary_warped, binary_warped))*255
midpoint = np.int(histogram.shape[0]/2)
leftx_base = np.argmax(histogram[:midpoint])
rightx_base = np.argmax(histogram[midpoint:]) + midpoint
nwindows = 9
window_height = np.int(binary_warped.shape[0]/nwindows)
nonzero = binary_warped.nonzero()
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
leftx_current = leftx_base
rightx_current = rightx_base
margin = 100
minpix = 50
left_lane_inds = []
right_lane_inds = []
for window in range(nwindows):
win_y_low = binary_warped.shape[0] - (window+1)*window_height
win_y_high = binary_warped.shape[0] - window*window_height
win_xleft_low = leftx_current - margin
win_xleft_high = leftx_current + margin
win_xright_low = rightx_current - margin
win_xright_high = rightx_current + margin
cv2.rectangle(out_img,(win_xleft_low,win_y_low),(win_xleft_high,win_y_high),
(0,255,0), 2)
cv2.rectangle(out_img,(win_xright_low,win_y_low),(win_xright_high,win_y_high),
(0,255,0), 2)
good_left_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) &
(nonzerox >= win_xleft_low) & (nonzerox < win_xleft_high)).nonzero()[0]
good_right_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) &
(nonzerox >= win_xright_low) & (nonzerox < win_xright_high)).nonzero()[0]
left_lane_inds.append(good_left_inds)
right_lane_inds.append(good_right_inds)
if len(good_left_inds) > minpix:
leftx_current = np.int(np.mean(nonzerox[good_left_inds]))
if len(good_right_inds) > minpix:
rightx_current = np.int(np.mean(nonzerox[good_right_inds]))
left_lane_inds = np.concatenate(left_lane_inds)
right_lane_inds = np.concatenate(right_lane_inds)
leftx = nonzerox[left_lane_inds]
lefty = nonzeroy[left_lane_inds]
rightx = nonzerox[right_lane_inds]
righty = nonzeroy[right_lane_inds]
left_fit = np.polyfit(lefty, leftx, 2)
right_fit = np.polyfit(righty, rightx, 2)
ploty = np.linspace(0, binary_warped.shape[0]-1, binary_warped.shape[0] )
left_fitx = left_fit[0]*ploty**2 + left_fit[1]*ploty + left_fit[2]
right_fitx = right_fit[0]*ploty**2 + right_fit[1]*ploty + right_fit[2]
out_img[nonzeroy[left_lane_inds], nonzerox[left_lane_inds]] = [255, 0, 0]
out_img[nonzeroy[right_lane_inds], nonzerox[right_lane_inds]] = [0, 0, 255]
plt.imshow(out_img)
plt.plot(left_fitx, ploty, color='yellow')
plt.plot(right_fitx, ploty, color='yellow')
plt.xlim(0, 1280)
plt.ylim(720, 0)
return ploty, left_fit, right_fit
ploty, left_fit, right_fit = slide_window(binary_warped, histogram)
def skip_sliding_window(binary_warped, left_fit, right_fit):
nonzero = binary_warped.nonzero()
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
margin = 100
left_lane_inds = ((nonzerox > (left_fit[0]*(nonzeroy**2) + left_fit[1]*nonzeroy +
left_fit[2] - margin)) & (nonzerox < (left_fit[0]*(nonzeroy**2) +
left_fit[1]*nonzeroy + left_fit[2] + margin)))
right_lane_inds = ((nonzerox > (right_fit[0]*(nonzeroy**2) + right_fit[1]*nonzeroy +
right_fit[2] - margin)) & (nonzerox < (right_fit[0]*(nonzeroy**2) +
right_fit[1]*nonzeroy + right_fit[2] + margin)))
leftx = nonzerox[left_lane_inds]
lefty = nonzeroy[left_lane_inds]
rightx = nonzerox[right_lane_inds]
righty = nonzeroy[right_lane_inds]
left_fit = np.polyfit(lefty, leftx, 2)
right_fit = np.polyfit(righty, rightx, 2)
ploty = np.linspace(0, binary_warped.shape[0]-1, binary_warped.shape[0] )
left_fitx = left_fit[0]*ploty**2 + left_fit[1]*ploty + left_fit[2]
right_fitx = right_fit[0]*ploty**2 + right_fit[1]*ploty + right_fit[2]
################################
## Visualization
################################
out_img = np.dstack((binary_warped, binary_warped, binary_warped))*255
window_img = np.zeros_like(out_img)
out_img[nonzeroy[left_lane_inds], nonzerox[left_lane_inds]] = [255, 0, 0]
out_img[nonzeroy[right_lane_inds], nonzerox[right_lane_inds]] = [0, 0, 255]
left_line_window1 = np.array([np.transpose(np.vstack([left_fitx-margin, ploty]))])
left_line_window2 = np.array([np.flipud(np.transpose(np.vstack([left_fitx+margin,
ploty])))])
left_line_pts = np.hstack((left_line_window1, left_line_window2))
right_line_window1 = np.array([np.transpose(np.vstack([right_fitx-margin, ploty]))])
right_line_window2 = np.array([np.flipud(np.transpose(np.vstack([right_fitx+margin,
ploty])))])
right_line_pts = np.hstack((right_line_window1, right_line_window2))
cv2.fillPoly(window_img, np.int_([left_line_pts]), (0,255, 0))
cv2.fillPoly(window_img, np.int_([right_line_pts]), (0,255, 0))
result = cv2.addWeighted(out_img, 1, window_img, 0.3, 0)
plt.imshow(result)
plt.plot(left_fitx, ploty, color='yellow')
plt.plot(right_fitx, ploty, color='yellow')
plt.xlim(0, 1280)
plt.ylim(720, 0)
ret = {}
ret['leftx'] = leftx
ret['rightx'] = rightx
ret['left_fitx'] = left_fitx
ret['right_fitx'] = right_fitx
ret['ploty'] = ploty
return ret
draw_info = skip_sliding_window(binary_warped, left_fit, right_fit)
def measure_curvature(ploty, lines_info):
ym_per_pix = 30/720
xm_per_pix = 3.7/700
leftx = lines_info['left_fitx']
rightx = lines_info['right_fitx']
leftx = leftx[::-1]
rightx = rightx[::-1]
y_eval = np.max(ploty)
left_fit_cr = np.polyfit(ploty*ym_per_pix, leftx*xm_per_pix, 2)
right_fit_cr = np.polyfit(ploty*ym_per_pix, rightx*xm_per_pix, 2)
left_curverad = ((1 + (2*left_fit_cr[0]*y_eval*ym_per_pix + left_fit_cr[1])**2)**1.5) / np.absolute(2*left_fit_cr[0])
right_curverad = ((1 + (2*right_fit_cr[0]*y_eval*ym_per_pix + right_fit_cr[1])**2)**1.5) / np.absolute(2*right_fit_cr[0])
print(left_curverad, 'm', right_curverad, 'm')
return left_curverad, right_curverad
left_curverad, right_curverad = measure_curvature(ploty, draw_info)
21233.5680677 m 1293.63478872 m
def draw_lane_lines(original_image, warped_image, Minv, draw_info):
leftx = draw_info['leftx']
rightx = draw_info['rightx']
left_fitx = draw_info['left_fitx']
right_fitx = draw_info['right_fitx']
ploty = draw_info['ploty']
warp_zero = np.zeros_like(warped_image).astype(np.uint8)
color_warp = np.dstack((warp_zero, warp_zero, warp_zero))
pts_left = np.array([np.transpose(np.vstack([left_fitx, ploty]))])
pts_right = np.array([np.flipud(np.transpose(np.vstack([right_fitx, ploty])))])
pts = np.hstack((pts_left, pts_right))
cv2.fillPoly(color_warp, np.int_([pts]), (0,255, 0))
newwarp = cv2.warpPerspective(color_warp, Minv, (original_image.shape[1], original_image.shape[0]))
result = cv2.addWeighted(original_image, 1, newwarp, 0.3, 0)
return result
result = draw_lane_lines(image, binary_warped, Minv, draw_info)
plt.imshow(result)
<matplotlib.image.AxesImage at 0x10bf5e748>
global used_warped
global used_ret
def process_image(image):
global used_warped
global used_ret
#Undistort image
image, mtx, dist_coefficients = cal_undistort(image, objpoints, imgpoints)
# Gradient thresholding
gradient_combined = apply_thresholds(image)
# Color thresholding
s_binary = apply_color_threshold(image)
# Combine Gradient and Color thresholding
combined_binary = combine_threshold(s_binary, gradient_combined)
# Transforming Perspective
binary_warped, Minv = warp(combined_binary)
# Getting Histogram
histogram = get_histogram(binary_warped)
# Sliding Window to detect lane lines
ploty, left_fit, right_fit = slide_window(binary_warped, histogram)
# Skipping Sliding Window
ret = skip_sliding_window(binary_warped, left_fit, right_fit)
# Measuring Curvature
left_curverad, right_curverad = measure_curvature(ploty, ret)
# Sanity check: whether the lines are roughly parallel and have similar curvature
slope_left = ret['left_fitx'][0] - ret['left_fitx'][-1]
slope_right = ret['right_fitx'][0] - ret['right_fitx'][-1]
slope_diff = abs(slope_left - slope_right)
slope_threshold = 150
curve_diff = abs(left_curverad - right_curverad)
curve_threshold = 10000
if (slope_diff > slope_threshold or curve_diff > curve_threshold):
binary_warped = used_warped
ret = used_ret
# Visualizing Lane Lines Info
result = draw_lane_lines(image, binary_warped, Minv, ret)
# Annotating curvature
fontType = cv2.FONT_HERSHEY_SIMPLEX
curvature_text = 'The radius of curvature = ' + str(round(left_curverad, 3)) + 'm'
cv2.putText(result, curvature_text, (30, 60), fontType, 1.5, (255, 255, 255), 3)
# Annotating deviation
deviation_pixels = image.shape[1]/2 - abs(ret['right_fitx'][-1] - ret['left_fitx'][-1])
xm_per_pix = 3.7/700
deviation = deviation_pixels * xm_per_pix
direction = "left" if deviation < 0 else "right"
deviation_text = 'Vehicle is ' + str(round(abs(deviation), 3)) + 'm ' + direction + ' of center'
cv2.putText(result, deviation_text, (30, 110), fontType, 1.5, (255, 255, 255), 3)
used_warped = binary_warped
used_ret = ret
return result
#result_image = process_image(image)
#plt.imshow(result_image)
import imageio
imageio.plugins.ffmpeg.download()
from moviepy.editor import VideoFileClip
from IPython.display import HTML
output = 'result.mp4'
clip = VideoFileClip("project_video.mp4")
video_clip = clip.fl_image(process_image)
%time video_clip.write_videofile(output, audio=False)